cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282013 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and 49*x + 48*(y-z) are squares.

Original entry on oeis.org

1, 2, 3, 3, 2, 1, 3, 2, 1, 4, 4, 2, 2, 2, 1, 2, 2, 4, 8, 4, 3, 2, 3, 2, 3, 5, 5, 7, 3, 2, 5, 1, 3, 7, 6, 5, 5, 3, 5, 3, 2, 3, 9, 5, 2, 6, 3, 1, 3, 5, 5, 10, 6, 2, 8, 4, 3, 5, 6, 3, 3, 3, 4, 4, 2, 5, 9, 8, 5, 4, 6, 1, 5, 6, 5, 9, 2, 3, 7, 1, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 04 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 5, 8, 14, 31, 47, 71, 79, 143, 248, 463, 1039).
The author has proved that any nonnegative integer can be written as the sum of a fourth power and three squares.
We have verified a(n) > 0 for all n = 0..10^7.
See also A281976, A281977 and A282014 for similar conjectures.
Qing-Hu Hou at Tianjin University verified a(n) > 0 for n up to 10^9. - Zhi-Wei Sun, Jun 02 2019

Examples

			a(5) = 1 since 5 = 1^2 + 0^2 + 0^2 + 2^2 with 1 = 1^2 and 49*1 + 48*(0-0) = 7^2.
a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 0 = 0^2 and 49*0 + 48*(2-2) = 0^2.
a(14) = 1 since 14 = 1^2 + 2^2 + 3^2 + 0^2 with 1 = 1^2 and 49*1 + 48*(2-3) = 1^2.
a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(1-2) = 1^2.
a(47) = 1 since 47 = 1^2 + 6^2 + 1^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(6-1) = 17^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 6^2 + 3^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2.
a(79) = 1 since 79 = 1^2 + 7^2 + 2^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(7-2) = 17^2.
a(143) = 1 since 143 = 1^2 + 5^2 + 6^2 + 9^2 with 1 = 1^2 and 49*1 + 48*(5-6) = 1^2.
a(248) = 1 since 248 = 4^2 + 6^2 + 0^2 + 14^2 with 4 = 2^2 and 49*4 + 48*(6-0) = 22^2.
a(463) = 1 since 463 = 9^2 + 6^2 + 15^2 + 11^2 with 9 = 3^2 and 49*9 + 48*(6-15) = 3^2.
a(1039) = 1 since 1039 = 1^2 + 22^2 + 23^2 + 5^2 with 1 = 1^2 and 49*1 + 48*(22-23) = 1^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[49x^2+48(y-z)],r=r+1],{x,0,n^(1/4)},{y,0,Sqrt[n-x^4]},{z,0,Sqrt[n-x^4-y^2]}];Print[n," ",r];Continue,{n,0,80}]