A282019 Coefficients in q-expansion of E_2*E_4, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively.
1, 216, -3672, -62496, -322488, -1121904, -2969568, -6737472, -13678200, -24978312, -43826832, -70620768, -112325472, -166558896, -248342976, -346320576, -491604984, -655461072, -897864696, -1154109600, -1532856528, -1921344768, -2488726944, -3042415296, -3876616800, -4639932504
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(numtheory); M:=100; E := proc(k) local n, t1; global M; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1); series(t1, q, M+1); end; e2:=E(2); e4:=E(4); e6:=E(6); series(e2*e4,q,M+1); seriestolist(%);
-
Mathematica
terms = 26; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E2[x]*E4[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)