A282036 a(n) is the sum of quadratic nonresidues of A002145(n) (the n-th prime == 3 mod 4).
2, 14, 33, 95, 161, 279, 473, 658, 944, 1139, 1491, 1738, 1826, 2884, 2996, 4318, 4585, 5004, 6191, 6683, 7849, 8413, 10314, 10746, 11394, 13157, 13393, 16013, 16566, 18936, 19783, 20376, 23946, 27057, 27804, 30883, 35541, 35232, 36384, 39832, 45671, 50858, 51363, 50059, 55097, 56040
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Christian Aebi, Grant Cairns, Sums of Quadratic residues and nonresidues, arXiv:1512.00896 [math.NT], 2015.
Crossrefs
Programs
-
Maple
with(numtheory): a:=[]; m:=[]; d:=[]; for i1 from 1 to 200 do p:=ithprime(i1); if (p mod 4) = 3 then sp:=0; sm:=0; for j from 1 to p-1 do if legendre(j,p)=1 then sp:=sp+j; else sm:=sm+j; fi; od; a:=[op(a),sp]; m:=[op(m),sm]; d:=[op(d),sm-sp]; fi; od: a; m; d; # A282035, A282036, A282037 # Alternative: f:= p -> add(-k^2 mod p, k=1..(p-1)/2):: map(f, select(isprime, [seq(p,p=3..1000,4)])); # Robert Israel, Nov 09 2020
-
Mathematica
f[p_] := Total[Range[p-1] ~Complement~ Table[Mod[k^2, p], {k, (p-1)/2}] ]; f /@ Select[Range[3, 1000, 4], PrimeQ] (* Jean-François Alcover, Feb 16 2018, after Robert Israel *)
-
PARI
lista(nn) = forprime(p=2, nn, if(p%4==3, print1(sum(k=1, p-1, if (!issquare(Mod(k, p)), k)), ", "))); \\ Michel Marcus, Nov 09 2020
Formula
a(n) = Sum_{k=1..(A002145(n)-1)/2} (-k^2) mod A002145(n). - J. M. Bergot and Robert Israel, Nov 09 2020