A282041 Let p = n-th prime == 7 mod 8; a(n) = sum of quadratic residues mod p.
7, 92, 186, 423, 994, 1343, 2369, 3683, 5134, 6012, 7831, 8955, 11596, 12428, 15517, 16802, 21148, 28720, 31929, 33321, 41807, 44778, 51856, 51253, 57466, 57845, 82063, 88015, 95281, 97050, 117916, 127225, 130025, 135180, 165423, 161927, 176915, 183609, 193132, 202180, 228212, 228056, 236849
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2500
- Aebi, Christian, and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 (2015).
Programs
-
Maple
with(numtheory): Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; for i1 from 1 to 300 do p:=ithprime(i1); if (p mod 8) = 7 then ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; for j from 1 to p-1 do if legendre(j, p)=1 then q:=q+j; if j
-
Mathematica
Table[Table[Mod[a^2, p], {a, 1, (p-1)/2}]//Total, {p, Select[Prime[Range[100]], Mod[#, 8] == 7 &]}] (* Vincenzo Librandi, Feb 21 2017 *)