A282079 Number of n-element subsets of [n+2] having an even sum.
1, 1, 2, 6, 9, 9, 12, 20, 25, 25, 30, 42, 49, 49, 56, 72, 81, 81, 90, 110, 121, 121, 132, 156, 169, 169, 182, 210, 225, 225, 240, 272, 289, 289, 306, 342, 361, 361, 380, 420, 441, 441, 462, 506, 529, 529, 552, 600, 625, 625, 650, 702, 729, 729, 756, 812, 841
Offset: 0
Examples
a(3) = 6: {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}. a(4) = 9: {1,2,3,4}, {1,2,3,6}, {1,2,4,5}, {1,2,5,6}, {1,3,4,6}, {1,4,5,6}, {2,3,4,5}, {2,3,5,6}, {3,4,5,6}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-5,7,-7,5,-3,1).
Crossrefs
Cf. A282011.
Programs
-
PARI
Vec(-(x^4-2*x^3+4*x^2-2*x+1) / ((x^2+1)^2*(x-1)^3) + O(x^90)) \\ Colin Barker, Feb 06 2017
Formula
G.f.: -(x^4-2*x^3+4*x^2-2*x+1)/((x^2+1)^2*(x-1)^3).
a(n) = A282011(n+2,n).
a(n) = (2*(1+n)*(2+n) - i*(-i)^n*((1+2*i)+(1+i)*n) + i^n*((2+i)+(1+i)*n))/8 where i=sqrt(-1). - Colin Barker, Feb 06 2017