A282082 Number of n-element subsets of [n+6] having an even sum.
1, 3, 12, 44, 110, 226, 452, 868, 1519, 2485, 3976, 6216, 9324, 13524, 19320, 27192, 37389, 50391, 67188, 88660, 115258, 147862, 188188, 237692, 297115, 367913, 452816, 554064, 672792, 811240, 973488, 1162800, 1380825, 1630827, 1918620, 2248764, 2623558
Offset: 0
Examples
a(0) = 1: {}. a(1) = 3: {2}, {4}, {6}. a(2) = 12: {1,3}, {1,5}, {1,7}, {2,4}, {2,6}, {2,8}, {3,5}, {3,7}, {4,6}, {4,8}, {5,7}, {6,8}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7, -25, 63, -125, 203, -277, 323, -323, 277, -203, 125, -63, 25, -7, 1).
Crossrefs
Cf. A282011.
Formula
G.f.: -(x^8-4*x^7+16*x^6-28*x^5+38*x^4-28*x^3+16*x^2-4*x+1) / ((x^2+1)^4*(x-1)^7).
a(n) = A282011(n+6,n).