A282083 Number of n-element subsets of [n+7] having an even sum.
1, 4, 16, 60, 170, 396, 848, 1716, 3235, 5720, 9696, 15912, 25236, 38760, 58080, 85272, 122661, 173052, 240240, 328900, 444158, 592020, 780208, 1017900, 1315015, 1682928, 2135744, 2689808, 3362600, 4173840, 5147328, 6310128, 7690953, 9321780, 11240400
Offset: 0
Examples
a(0) = 1: {}. a(1) = 4: {2}, {4}, {6}, {8}. a(2) = 16: {1,3}, {1,5}, {1,7}, {1,9}, {2,4}, {2,6}, {2,8}, {3,5}, {3,7}, {3,9}, {4,6}, {4,8}, {5,7}, {5,9}, {6,8}, {7,9}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -32, 88, -188, 328, -480, 600, -646, 600, -480, 328, -188, 88, -32, 8, -1).
Crossrefs
Cf. A282011.
Formula
G.f.: (x^8-4*x^7+16*x^6-28*x^5+38*x^4-28*x^3+16*x^2-4*x+1) / ((x^2+1)^4*(x-1)^8).
a(n) = A282011(n+7,n).