A282084 Number of n-element subsets of [n+8] having an even sum.
1, 4, 20, 85, 255, 636, 1484, 3235, 6470, 12120, 21816, 37854, 63090, 101640, 159720, 245322, 367983, 540540, 780780, 1110395, 1554553, 2145572, 2925780, 3945045, 5260060, 6941168, 9076912, 11769100, 15131700, 19302480, 24449808, 30763812, 38454765, 47771700
Offset: 0
Examples
a(0) = 1: {}. a(1) = 4: {2}, {4}, {6}, {8}. a(2) = 20: {1,3}, {1,5}, {1,7}, {1,9}, {2,4}, {2,6}, {2,8}, {2,10}, {3,5}, {3,7}, {3,9}, {4,6}, {4,8}, {4,10}, {5,7}, {5,9}, {6,8}, {6,10}, {7,9}, {8,10}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -41, 129, -316, 636, -1084, 1596, -2054, 2326, -2326, 2054, -1596, 1084, -636, 316, -129, 41, -9, 1).
Crossrefs
Cf. A282011.
Formula
G.f.: -(x^2-x+1)*(x^8-4*x^7+20*x^6-36*x^5+54*x^4-36*x^3+20*x^2-4*x+1) / ((x^2+1)^5*(x-1)^9).
a(n) = A282011(n+8,n).