A282085 Number of n-element subsets of [n+9] having an even sum.
1, 5, 25, 110, 365, 1001, 2485, 5720, 12190, 24310, 46126, 83980, 147070, 248710, 408430, 653752, 1021735, 1562275, 2343055, 3453450, 5008003, 7153575, 10079355, 14024400, 19284460, 26225628, 35302540, 47071640, 62203340, 81505820, 105955628, 136719440
Offset: 0
Examples
a(0) = 1: {}. a(1) = 5: {2}, {4}, {6}, {8}, {10}. a(2) = 25: {1,3}, {1,5}, {1,7}, {1,9}, {1,11}, {2,4}, {2,6}, {2,8}, {2,10}, {3,5}, {3,7}, {3,9}, {3,11}, {4,6}, {4,8}, {4,10}, {5,7}, {5,9}, {5,11}, {6,8}, {6,10}, {7,9}, {7,11}, {8,10}, {9,11}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10, -50, 170, -445, 952, -1720, 2680, -3650, 4380, -4652, 4380, -3650, 2680, -1720, 952, -445, 170, -50, 10, -1).
Crossrefs
Cf. A282011.
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[Ceiling[n/2], 2 j] Binomial[Floor[n/2], k - 2 j], {j, 0, Floor[(n + 1)/4]}]; Table[T[n + 9, n], {n, 0, 31}] (* or *) CoefficientList[Series[(x^2 - x + 1) (x^8 - 4 x^7 + 20 x^6 - 36 x^5 + 54 x^4 - 36 x^3 + 20 x^2 - 4 x + 1)/((x^2 + 1)^5 (x - 1)^10), {x, 0, 31}], x] (* Indranil Ghosh, Feb 26 2017 *)
Formula
G.f.: (x^2-x+1)*(x^8-4*x^7+20*x^6-36*x^5+54*x^4-36*x^3+20*x^2-4*x+1) / ((x^2+1)^5*(x-1)^10).
a(n) = A282011(n+9,n).