A282087 Number of length-n ternary strings that do not contain both "00" and "11".
1, 3, 9, 27, 79, 229, 657, 1871, 5295, 14909, 41801, 116783, 325287, 903741, 2505377, 6932479, 19151519, 52833853, 145578265, 400705135, 1101936119, 3027902045, 8314284721, 22816209855, 62579270191, 171559358493, 470132335209, 1287861941487, 3526800739399
Offset: 0
Examples
for n=5 the 229 acceptable ternary strings are all length 5 strings of '0', '1', and '2' _except_ '00011', '00110', '00111', '00112', '00211', '01100', '10011', '11000', '11001', '11002', '11100', '11200', '20011', '21100'.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Math StackExchange, Find a recurrence relation for the number of ternary strings of length ? that do not contain two consecutive 0's and two consecutive 1's.
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-6,-2).
Crossrefs
Cf. A078057 (number of length-n ternary strings that contain neither "00" nor "11").
Programs
-
Mathematica
Table[3^n, {n, 0, 3}]~Join~LinearRecurrence[{4, -1, -6, -2}, {79, 229, 657, 1871}, 24] (* or *) Table[Count[Tuples[Range[0, 2], n], w_ /; Boole[SequenceCount[w, {0, 0}] > 0] Boole[SequenceCount[w, {1, 1}] > 0] == 0], {n, 0, 12}] (* Michael De Vlieger, Feb 05 2017, latter program version 10.1 *)
-
PARI
a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-2,-6,-1,4]^n*[1;3;9;27])[1,1] \\ Charles R Greathouse IV, Feb 05 2017
-
PARI
Vec((1 + x)*(1 - 2*x) / ((1 - 2*x - x^2)*(1 - 2*x - 2*x^2)) + O(x^30)) \\ Colin Barker, Feb 07 2017
-
Python
import itertools # Not feasible on most machines for large numbers def find_a_sub_n(n): c = 0 for q in itertools.product(*([['0','1','2']]*n)): h = ''.join(q) if not (('11' in h) and ('00' in h)): c = c+1 return c
Formula
a(n) = 4*a(n-1) - a(n-2) - 6*a(n-3) - 2*a(n-4) for n >= 4 (derived in the math.stackexchange.com link).
From Colin Barker, Feb 07 2017: (Start)
a(n) = -(1-u)^(1+n)/2 - (1+u)^(1+n)/2 + (1-v)^n - (2*(1-v)^n)/v + (1+v)^n + (2*(1+v)^n) / v where u=sqrt(2) and v=sqrt(3).
G.f.: (1 + x)*(1 - 2*x) / ((1 - 2*x - x^2)*(1 - 2*x - 2*x^2)).
(End)