A282089 Decimal expansion of constant 1.287194... related to a conjectural Viète-like formula for Pi.
1, 2, 8, 7, 1, 9, 4, 0, 3, 6, 0, 6, 7, 9, 2, 4, 0, 1, 7, 0, 2, 0, 9, 2, 7, 8, 0, 7, 5, 8, 1, 1, 9, 8, 7, 6, 4, 4, 0, 8, 3, 5, 4, 3, 5, 6, 6, 9, 9, 2, 7, 8, 0, 5, 4, 4, 8, 6, 1, 4, 1, 2, 9, 3, 2, 7, 1, 4, 5, 2, 8, 3, 9, 1, 4, 4, 8, 7, 2, 0, 2, 2, 1, 1, 2, 3, 7, 9, 0, 7, 9, 9, 2, 6, 0, 9, 3, 4, 0, 3, 3, 9, 9, 8
Offset: 1
Examples
1.287194036067924017020927807581...
Links
- Sanjar Abrarov, Table of n, a(n) for n = 1..104
- S. M. Abrarov and B. M. Quine, A set of the Viète-like recurrence relations for the unity constant, arXiv:1702.00901 [math.GM], 2017.
Crossrefs
Cf. A000796.
Programs
-
Mathematica
Clear[a, b, c] a[k_] := N[Nest[Sqrt[2 + #1] &, 0, k], 100] b[k_] := b[k] = Sqrt[2 - a[k]]/a[k + 1] c[1] := b[1] = b[1] c[k_] := c[k] = (c[k - 1] + b[k])/(1 - c[k - 1]*b[k]) k := 90 Print["Index k = ", k] m := 1 Print["Power m = ", m] (* The equation (12) *) apprPi := 2^(k + 1)*(1 - c[k]^m) Print["Actual value of Pi is ", N[Pi, 30]] Print["At k = ", k, " the approximated value of Pi is ", N[apprPi, 30]] K := 300 Print["Truncating integer K = ", K] Print["Computing the digits ..."] RealDigits[N[Sum[1 - c[k]^m, {k, 1, K}], 30]][[1]]
Formula
Sum_{k >= 1} (1 - c_k) = 1.287194... , where c_k is computed by the recurrence equations a_1 = sqrt(2), a_k = sqrt(2 + a_{k - 1}), b_k = sqrt(2 - a_k)/a_{k + 1}, c_1 = b_1 and c_k = (c_{k - 1} + b_k)/(1 - c_{k - 1}*b_k).
Comments