A282093 Larger member of a pair (x,y) which solves x^2+y^2 = z^3 for positive x, y and z.
2, 10, 11, 16, 26, 30, 39, 46, 52, 54, 68, 80, 88, 100, 110, 117, 120, 128, 130, 142, 145, 170, 198, 205, 208, 222, 236, 240, 250, 270, 286, 297, 310, 312, 322, 350, 366, 368, 371, 377, 406, 414, 415, 416, 432, 455, 481, 488, 505, 518, 520, 524, 544, 549, 584
Offset: 1
Keywords
Examples
2^2+2^2=2^3, so 2 is in. 5^2+10^2=5^3, so 10 is in. 2^2+11^2 = 5^3, so 11 is in. 16^2+16^2=8^3, so 16 is in.
Programs
-
Maple
isA282093 := proc(y) local x,z3 ; for x from 1 to y do z3 := x^2+y^2 ; if isA000578(z3) then return true ; end if; end do: return false ; end proc: for y from 1 to 800 do if isA282093(y) then printf("%d,\n",y) ; end if; end do:
-
Mathematica
isA282093[y_] := Module[{x, z3}, For[x = 1, x <= y, x++, z3 = x^2+y^2; If[IntegerQ[z3^(1/3)], Return[True]]]; Return[False]]; Reap[For[y = 1, y <= 800, y++, If[isA282093[y], Print[y]; Sow[y]]]][[2, 1]] (* Jean-François Alcover, May 29 2023, after R. J. Mathar *)
Comments