A282095 Larger member of a coprime pair (x,y) which solves x^2 + y^2 = z^3 with positive x, y and z.
11, 46, 52, 117, 142, 198, 236, 286, 415, 488, 524, 549, 621, 666, 835, 873, 908, 970, 1001, 1199, 1388, 1432, 1692, 1757, 1962, 1964, 1971, 2035, 2041, 2366, 2392, 2630, 2655, 2681, 2702, 2815, 2826, 3195, 3421, 3544, 3664, 3715, 4048, 4070, 4097, 4356
Offset: 1
Keywords
Examples
2^2 + 11^2 = 5^3, so 11 is in the sequence. 9^2 + 46^2 = 13^3, so 46 is in the sequence. 47^2 + 52^2 = 17^3, so 52 is in the sequence. 44^2 + 117^2 = 25^2, so 117 is in the sequence.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1172
- Imin Chen, On the equation s^2+y^(2p)=alpha^3, Math. Comp. 77 (262) (2008) 1223-1227.
- Sander R. Dahmen, A refined modular approach to the diophantine equation x^2+y^(2n)=z^3, arXiv:1002.0020 [math.NT] (2010).
Programs
-
Maple
# slow version for demonstration only. isA282095 := proc(y) local x,z3 ; for x from 1 to y do if igcd(x,y) = 1 then z3 := x^2+y^2 ; if isA000578(z3) then return true ; end if; end if; end do: return false ; end proc: for y from 1 do if isA282095(y) then printf("%d,\n",y) ; end if; end do:
-
Mathematica
okQ[y_] := Module[{x, z3}, For[x=1, x
Jean-François Alcover, Dec 04 2017, after R. J. Mathar *)
Formula
{y: x^2 + y^2 = z^3; gcd(x,y) = 1; 1 <= x <= y; x, y, z in N}
Comments