A282094 Larger member of a pair (x,y) which solves x^2 + y^2 = z^3 for nonnegative x, y and z.
0, 1, 2, 8, 10, 11, 16, 26, 27, 30, 39, 46, 52, 54, 64, 68, 80, 88, 100, 110, 117, 120, 125, 128, 130, 142, 145, 170, 198, 205, 208, 216, 222, 236, 240, 250, 270, 286, 297, 310, 312, 322, 343, 350, 366, 368, 371, 377, 406, 414, 415, 416, 432, 455, 481
Offset: 1
Keywords
Examples
0^2 + 0^2 = 0^3, so 0 is in. 0^2 + 1^2 = 1^3, so 1 is in. 2^2 + 2^2 = 2^3, so 2 is in. 0^2 + 8^2 = 4^3, so 8 is in. 5^2 + 10^2 = 5^3, so 10 is in.
Crossrefs
Cf. A282093.
Programs
-
Maple
isA282094 := proc(y) local x,z3 ; for x from 0 to y do z3 := x^2+y^2 ; if isA000578(z3) then return true ; end if; end do: return false ; end proc: for y from 0 to 800 do if isA282094(y) then printf("%d,",y) ; end if; end do:
-
Mathematica
isA282094[y_] := If[IntegerQ[y^(1/3)], True, Module[{x, z3}, For[x = 1, x <= y, x++, z3 = x^2 + y^2; If[IntegerQ[z3^(1/3)], Return[True]]]; Return[False]]]; Reap[For[y = 0, y <= 800, y++, If[isA282094[y], Print[y]; Sow[y]]]][[2, 1]] (* Jean-François Alcover, Nov 03 2023, after R. J. Mathar *)
-
PARI
is(n)=my(n2=n^2); for(x=0,n, if(ispower(n2+x^2,3), return(1))); 0 \\ Charles R Greathouse IV, Jun 30 2017
-
Python
from sympy import factorint def is_cube(n): if n==0: return True return all(i%3==0 for i in factorint(n).values()) def ok(n): return any(is_cube(x**2 + n**2) for x in range(n + 1)) print([n for n in range(501) if ok(n)]) # Indranil Ghosh, Jun 30 2017
Comments