A284432
The number of positive integer sequences of length n with no duplicate substrings (forward or backward) of length greater than 1 and a minimal sum (= A282168(n)).
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 4, 48, 48, 144, 144, 144, 2160, 8496, 21312, 110592, 203904, 407808, 815616, 1631232, 15667200, 31334400, 445114368, 890228736, 7291772928, 14583545856, 36458864640, 72917729280, 145835458560, 1694545920000, 16054441574400, 101226251059200, 421941436416000, 2144473989120000, 13603849760931840
Offset: 1
For n = 7 the a(7) = 4 solutions are:
[1,3,3,2,2,1,1],
[1,2,2,3,3,1,1],
[1,1,3,3,2,2,1], and
[1,1,2,2,3,3,1].
A282193
a(n) is the minimal product of a positive integer sequence of length n with no duplicate substrings (forward or backward) of length greater than 1.
Original entry on oeis.org
1, 1, 2, 4, 6, 12, 36, 96, 240, 480, 1440, 5760, 17280, 40320, 120960, 483840, 1935360, 5806080, 17418240, 69672960, 348364800, 1045094400, 3832012800, 15328051200, 76640256000, 229920768000, 919683072000, 4598415360000, 22072393728000, 71735279616000, 286941118464000, 1434705592320000
Offset: 1
a(1) = 1 via [1];
a(2) = 1 via [1,1];
a(3) = 2 via [1,1,2];
a(4) = 4 via [1,1,2,2];
a(5) = 6 via [1,1,2,3,1];
a(6) = 12 via [1,1,2,2,3,1];
a(7) = 36 via [1,1,2,2,3,3,1];
a(8) = 96 via [1,1,2,2,3,1,4,2];
a(9) = 240 via [1,1,2,2,3,1,4,5,1];
a(10) = 480 via [1,1,2,2,3,1,4,2,5,1];
a(11) = 1440 via [1,1,2,2,3,3,1,4,2,5,1];
a(12) = 5760 via [1,1,2,2,3,1,4,2,5,1,6,2].
...
[1,2,3,1,2] is invalid because the substring [1,2] appears twice.
[1,2,1] is invalid because the substring [1,2] appears twice (once forward and once backward).
A282166
a(n) is the minimal sum of a positive integer sequence of length n with no duplicate substrings of length greater than 1, and every number different from its neighbors.
Original entry on oeis.org
1, 3, 4, 7, 8, 12, 13, 17, 18, 22, 24, 28, 30, 35, 37, 42, 44, 49, 51, 56, 59, 64, 67, 72, 75, 81, 84, 90, 93, 99, 102, 108, 111, 117, 121, 127, 131, 137, 141, 147, 151, 158, 162, 169, 173, 180, 184, 191, 195, 202, 206, 213, 218, 225, 230, 237, 242, 249, 254, 261, 266, 274, 279, 287, 292, 300, 305, 313, 318, 326, 331, 339, 344, 352, 358, 366, 372, 380, 386, 394
Offset: 1
a(1) = 1 via [1];
a(2) = 3 via [1,2];
a(3) = 4 via [1,2,1];
a(4) = 7 via [1,2,1,3];
a(5) = 8 via [1,2,1,3,1];
a(6) = 12 via [1,2,1,3,1,4];
a(7) = 13 via [1,2,1,3,1,4,1];
a(8) = 17 via [1,2,1,3,1,4,2,3];
a(9) = 18 via [1,2,1,3,2,3,1,4,1];
a(10) = 22 via [1,2,1,3,1,4,2,3,4,1];
a(11) = 24 via [1,2,1,3,2,3,1,4,1,5,1].
-
Table[Module[{s = Select[Permutations[Range@ n - 1, n], Length@ # > 1 &]}, Total@ First@ MinimalBy[#, Total] &@ DeleteCases[#, w_ /; Apply[Times, If[Length@ # > 0, Rest@ #, #] &@ Union@ Map[SequenceCount[w, #] &, s]] > 1] &@ Apply[Join, Map[MinimalBy[#, Total] &, Table[Select[Tuples[Range@ k, n], Function[w, Times @@ Boole@ {Length@ Union@ w == k, First@ #, If[n > 2, Xor @@ Rest@ #, True]} == 1 &@ Map[Length@ Split@ # == Length@ # &, {w, w[[1 ;; -1 ;; 2]], Rest[w][[1 ;; -1 ;; 2]]}]]], {k, n}]]]], {n, 7}] (* Michael De Vlieger, Mar 27 2017, Version 10 *)
A282167
a(n) is the minimal sum of a positive integer sequence of length n with no duplicate substrings (forward or backward) of length greater than 1, and no self-adjacent terms.
Original entry on oeis.org
1, 3, 6, 7, 11, 13, 17, 19, 25, 27, 31, 35, 39, 45, 47, 53, 57, 63, 67, 73, 77, 83, 87, 95, 99, 105, 111, 117, 123, 129, 135, 141, 149, 153, 161, 167, 175, 181, 189, 195, 203, 209, 217, 223, 231, 237, 247, 253, 261, 269, 277, 285, 293, 301, 309, 317, 325, 333, 341, 351, 357, 367, 375, 385, 393, 403, 411, 421, 429, 439
Offset: 1
Examples:
[1,1] is invalid because 1 is self-adjacent.
[1,2,3,1,2] is invalid because the substring [1,2] appears twice.
[1,2,1] is invalid because the substring [1,2] appears twice (once forward and once backward).
a(1) = 1 via [1];
a(2) = 3 via [1,2];
a(3) = 6 via [1,2,3];
a(4) = 7 via [1,2,3,1];
a(5) = 11 via [1,2,3,1,4];
a(6) = 13 via [1,2,3,1,4,2];
a(7) = 17 via [1,2,3,1,4,5,1];
a(8) = 19 via [1,2,3,1,4,2,5,1];
a(9) = 25 via [1,2,3,1,4,2,5,1,6];
a(10) = 27 via [1,2,3,1,4,2,5,1,6,2].
Showing 1-4 of 4 results.
Comments