A282173 Expansion of (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6.
1, 6, 15, 20, 15, 12, 31, 60, 60, 30, 21, 60, 90, 60, 21, 50, 120, 120, 50, 36, 135, 210, 135, 30, 60, 186, 186, 60, 15, 120, 217, 150, 75, 120, 240, 246, 180, 180, 210, 216, 150, 180, 200, 180, 150, 200, 300, 240, 165, 180, 390, 390, 180, 60, 180, 372, 225, 110, 135, 330, 351, 270, 300, 360, 435, 300, 375, 360, 300, 210
Offset: 0
Keywords
Examples
a(5) = 12 because we have: [5, 0, 0, 0, 0, 0] [0, 5, 0, 0, 0, 0] [0, 0, 5, 0, 0, 0] [0, 0, 0, 5, 0, 0] [0, 0, 0, 0, 5, 0] [0, 0, 0, 0, 0, 5] [1, 1, 1, 1, 1, 0] [1, 1, 1, 1, 0, 1] [1, 1, 1, 0, 1, 1] [1, 1, 0, 1, 1, 1] [1, 0, 1, 1, 1, 1] [0, 1, 1, 1, 1, 1]
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Ilya Gutkovskiy, Extended graphical example
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
- Index to sequences related to pyramidal numbers
Programs
-
Mathematica
nmax = 69; CoefficientList[Series[(Sum[x^(k (k + 1) (2 k + 1)/6), {k, 0, nmax}])^6, {x, 0, nmax}], x]
Formula
G.f.: (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6.
Comments