A282175 a(n) is the smallest product M=p_1*p_2*...*p_n with distinct primes p_i such that M+2^n=B, where B=q_1*q_2*...*q_n with distinct primes q_i, or a(n)=0 if there is no such M.
3, 6, 70, 2030, 42978, 1788710, 63905142, 5705962314, 888081948858, 120056591419170
Offset: 1
Examples
For n=3,...,8, we have the following numbers M, B=M+2^n and their prime divisors: 70 = 2 5 7; 78 = 2 3 13. 2030 = 2 5 7 29; 2046 = 2 3 11 31. 42978 = 2 3 13 19 29; 43010 = 2 5 11 17 23. 1788710 = 2 5 7 11 23 101; 1788774 = 2 3 13 17 19 71. 63905142 = 2 3 7 17 37 41 59; 63905270 = 2 5 11 13 23 29 67. 5705962314 = 2 3 13 17 19 23 43 229; 5705962570 = 2 5 7 11 29 59 61 71.
Extensions
a(9)-a(10) from Giovanni Resta, Feb 28 2017
Comments