A282192 Number of ways of writing n as a sum of a prime and a squarefree semiprime.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 1, 2, 1, 2, 1, 3, 2, 3, 2, 3, 3, 4, 0, 2, 2, 4, 2, 3, 2, 5, 4, 4, 4, 5, 2, 4, 4, 5, 4, 3, 2, 4, 3, 6, 5, 6, 2, 3, 4, 7, 6, 4, 3, 3, 7, 6, 6, 6, 2, 6, 7, 7, 5, 4, 4, 4, 7, 7, 8, 6, 3, 6, 7, 8, 8, 3, 4, 7, 6, 8, 10, 8, 3, 4, 8, 11, 10, 6, 8, 7, 11, 9, 9, 5, 6, 5, 9, 11, 9, 5, 8
Offset: 0
Examples
a(17) = 4 because we have [15, 2], [14, 3], [11, 6] and [10, 7].
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Ilya Gutkovskiy, Extended graphical example
- Eric Weisstein's World of Mathematics, Semiprime
- Eric Weisstein's World of Mathematics, Squarefree
Programs
-
Maple
N:= 200: # for a(0)..a(N) P:= select(isprime, [2,seq(i,i=3..N,2)]): nP:= nops(P): SFS:= NULL: j:= nP: for i from 1 to nP while j > 0 do while P[i]*P[j] > N do j:= j-1; if j = 0 then break fi; od: SFS:= SFS, op(map(`*`,P[1..min(i-1,j)],P[i])) od: gS:= add(x^i,i=[SFS]): gP:= add(x^P[i],i=1..nP): g:= gP*gS: [seq(coeff(g,x,i),i=0..N)]; # Robert Israel, Jun 15 2020
-
Mathematica
nmax = 108; CoefficientList[Series[Sum[x^Prime[k], {k, 1, nmax}] Sum[MoebiusMu[k]^2 Floor[2/PrimeOmega[k]] Floor[PrimeOmega[k]/2] x^k, {k, 2, nmax}], {x, 0, nmax}], x]
Comments