cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282194 a(n) = smallest positive k such that 2*n + 2^k + 1 is composite.

Original entry on oeis.org

3, 5, 2, 1, 4, 2, 1, 7, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 4, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 4, 2, 1, 4, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Altug Alkan, Feb 15 2017

Keywords

Comments

Least k such that a(k) = n are 3, 2, 0, 4, 1, 112, 7, 32917, 802, 9712, 1198673602 for the initial terms.

Examples

			a(1) = 5 because 3 + 2^k is prime for 0 < k < 5 and 3 + 2^5 = 35 is composite.
		

Crossrefs

Programs

  • Mathematica
    spk[n_]:=Module[{k=1},While[!CompositeQ[2n+2^k+1],k++];k]; Array[spk,110,0] (* Harvey P. Dale, Apr 26 2017 *)
  • PARI
    a(n) = my(k=1); while(isprime(2*n+2^k+1), k++); k;