A282279 Decimal expansion of minimal radius of a circle that contains 12 non-overlapping unit disks.
4, 0, 2, 9, 6, 0, 1, 9, 3, 0, 1, 1, 6, 1, 8, 3, 4, 9, 7, 4, 8, 2, 7, 4, 1, 0, 4, 1, 2, 6, 3, 3, 4, 9, 8, 9, 6, 2, 9, 5, 8, 0, 5, 8, 3, 5, 8, 8, 3, 4, 2, 3, 9, 5, 6, 3, 4, 4, 3, 4, 1, 9, 3, 7, 1, 0, 0, 0, 6, 6, 1, 0, 4, 8, 6, 5, 2, 0, 4, 9, 6, 3, 9, 8, 6, 6, 4
Offset: 1
Examples
4.029601930116183497482741041263349896...
Links
- Matthew House, Table of n, a(n) for n = 1..10000
- F. Fodor, The densest packing of 12 congruent circles in a circle, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 41 (2000), No. 2, 401-409.
Programs
-
Mathematica
r = Root[#^5 - 3 #^4 + 7 #^2 - 15 # + 9 &, 3]; N[1 + 2 r/Sqrt[3], 20]
-
PARI
r = solve(x=2, 3, x^5 - 3*x^4 + 7*x^2 - 15*x + 9); 1 + 2*r/sqrt(3) \\ Michel Marcus, Feb 11 2017
Formula
Set r as the greatest real root of x^5 - 3*x^4 + 7*x^2 - 15*x + 9 = 0. Then, A = 1 + 2*r/sqrt(3) = 4.029601930...