cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282947 Number of ways of writing n as a sum of a perfect power and a squarefree semiprime.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 1, 0, 2, 2, 0, 0, 3, 3, 1, 1, 2, 1, 0, 1, 4, 3, 0, 1, 2, 3, 1, 3, 3, 3, 2, 2, 7, 3, 1, 0, 4, 5, 2, 2, 3, 3, 1, 2, 3, 4, 1, 1, 4, 5, 3, 2, 4, 4, 3, 3, 6, 3, 0, 2, 6, 6, 0, 4, 4, 3, 1, 1, 7, 1, 1, 2, 5, 5, 2, 4, 4, 6, 2, 3, 6, 4, 2, 3, 6, 6, 4, 3, 4, 4, 2, 5, 6, 5, 3, 1, 3, 5, 0, 3, 6, 3, 3, 2, 6, 5, 3, 1, 5, 7, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 25 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 108.
From Robert G. Wilson v, Feb 25 2017: (Start)
Conjecture: a(n) > 1 for all n > 604,
Conjecture: a(n) > 2 for all n > 1008, etc.
First occurrence of k: 0, 7, 14, 22, 30, 47, 66, 42, 127, 138, 150, 222, 251, 303, 210, 430, 330, 462, 670, 770, 983, 878, 1038, 1142, 1355, 1482, ... (End)

Examples

			a(22) = 3 because we have [21, 1], [16, 6] and [14, 8].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[(x + Sum[Boole[GCD @@ FactorInteger[k][[All, 2]] > 1] x^k, {k, 2, nmax}]) (Sum[MoebiusMu[k]^2 Floor[2/PrimeOmega[k]] Floor[PrimeOmega[k]/2] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=1} x^A001597(k))*(Sum_{k>=1} x^A006881(k)).

A287299 Number of ways of writing n as a sum of a proper prime power (A246547) and a nonprime squarefree number (A000469).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 1, 3, 0, 1, 1, 4, 3, 0, 2, 2, 2, 0, 3, 4, 3, 1, 2, 6, 3, 1, 0, 5, 4, 2, 2, 4, 3, 0, 2, 3, 5, 0, 1, 3, 4, 3, 2, 4, 3, 3, 4, 5, 4, 0, 2, 5, 5, 0, 4, 6, 2, 1, 1, 7, 3, 1, 2, 7, 4, 2, 4, 5, 5, 1, 3, 6, 5, 1, 3, 6, 6, 3, 4, 4, 4, 2, 4, 7, 6, 3, 1, 4, 4, 0, 4, 6, 5, 2, 2, 7, 5, 2, 1, 7, 8, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 108.

Examples

			a(26) = 3 because we have [25, 1], [22, 4] and [16, 10].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[(Sum[Boole[SquareFreeQ[k] && ! PrimeQ[k]] x^k, {k, 1, nmax}]) (Sum[Boole[PrimePowerQ[k] && ! PrimeQ[k]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    x='x+O('x^120); concat([0, 0, 0, 0, 0], Vec(sum(k=1, 120, (issquarefree(k) && !isprime(k))*x^k) * sum(k=1, 120, (isprimepower(k) && !isprime(k))*x^k))) \\ Indranil Ghosh, May 23 2017

Formula

G.f.: (Sum_{k>=1} x^A246547(k))*(Sum_{k>=1} x^A000469(k)).
Showing 1-2 of 2 results.