A282291 Lexicographically earliest sequence of distinct terms such that every pair of consecutive terms contains a term that is a unitary divisor of the other term.
1, 2, 6, 3, 12, 4, 20, 5, 10, 30, 15, 60, 420, 7, 14, 42, 21, 84, 28, 140, 35, 70, 210, 105, 840, 8, 24, 120, 40, 280, 56, 168, 1848, 11, 22, 66, 33, 132, 44, 220, 55, 110, 330, 165, 660, 4620, 77, 154, 462, 231, 924, 308, 1540, 385, 770, 2310, 1155, 9240, 88
Offset: 1
Keywords
Examples
The first terms, alongside their p-adic valuations with respect to p=2, 3, 5 and 7 (with 0's omitted), are: n a(n) v2 v3 v5 v7 -- ---- -- -- -- -- 1 1 2 2 1 3 6 1 1 4 3 1 5 12 2 1 6 4 2 7 20 2 1 8 5 1 9 10 1 1 10 30 1 1 1 11 15 1 1 12 60 2 1 1 13 420 2 1 1 1 14 7 1 15 14 1 1 16 42 1 1 1 17 21 1 1 18 84 2 1 1 19 28 2 1 20 140 2 1 1 21 35 1 1 22 70 1 1 1 23 210 1 1 1 1 24 105 1 1 1 25 840 3 1 1 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Logarithmic scatterplot of the first 250000 terms (the two blue sections are equal up to a scaling factor of 47)
- Rémy Sigrist, PARI program for A282291
Crossrefs
Programs
-
Mathematica
a = {1}; Do[k = 1; While[Or[MemberQ[a, k], Nand[Divisible[#2, #1], CoprimeQ[#1, #2/#1]]] & @@ Sort@ # &@{k, Last@ a}, k++]; AppendTo[a, k], {n, 58}]; a (* Michael De Vlieger, Feb 12 2017 *)
-
PARI
up_to = 2^23; v282291 = vector(up_to); m304090 = Map(); prev=1; for(n=1,up_to,fordiv(prev,d,if(!mapisdefined(m304090,d) && (1==gcd(d, prev/d)),v282291[n] = d;mapput(m304090,d,n);break)); if(!v282291[n], m = 2; try = m*prev; while(mapisdefined(m304090,try) || (gcd(prev, try/prev)!=1), m++; try = m*prev); v282291[n] = try; mapput(m304090,try,n)); prev = v282291[n]); A282291(n) = v282291[n]; A304090(n) = mapget(m304090,n); \\ Antti Karttunen, May 17 2018
Formula
For all n >= 1, A052331(a(n)) = A302853(n-1), A001222(a(n)) = A304099(n). - Antti Karttunen, May 17 2018
Comments