A282349 Expansion of (Sum_{k>=0} x^(k*(2*k^2+1)/3))^7.
1, 7, 21, 35, 35, 21, 14, 43, 105, 140, 105, 42, 28, 105, 210, 210, 105, 21, 35, 147, 252, 245, 175, 105, 77, 154, 315, 455, 420, 210, 63, 147, 441, 630, 420, 105, 7, 147, 441, 525, 350, 210, 106, 126, 322, 567, 735, 560, 210, 84, 301, 840, 1050, 630, 210, 49, 315, 875, 980, 630, 245, 35, 245, 707, 1050, 980, 560, 210, 168
Offset: 0
Keywords
Examples
a(6) = 14 because we have: [6, 0, 0, 0, 0, 0, 0] [0, 6, 0, 0, 0, 0, 0] [0, 0, 6, 0, 0, 0, 0] [0, 0, 0, 6, 0, 0, 0] [0, 0, 0, 0, 6, 0, 0] [0, 0, 0, 0, 0, 6, 0] [0, 0, 0, 0, 0, 0, 6] [1, 1, 1, 1, 1, 1, 0] [1, 1, 1, 1, 1, 0, 1] [1, 1, 1, 1, 0, 1, 1] [1, 1, 1, 0, 1, 1, 1] [1, 1, 0, 1, 1, 1, 1] [1, 0, 1, 1, 1, 1, 1] [0, 1, 1, 1, 1, 1, 1]
Links
- Ilya Gutkovskiy, Extended graphical example
- Eric Weisstein's World of Mathematics, Octahedral Number
Programs
-
Mathematica
nmax = 68; CoefficientList[Series[Sum[x^(k (2 k^2 + 1)/3), {k, 0, nmax}]^7, {x, 0, nmax}], x]
Formula
G.f.: (Sum_{k>=0} x^(k*(2*k^2+1)/3))^7.
Comments