A282401
Eisenstein series E_28(q) (alternate convention E_14(q)), multiplied by 3392780147.
Original entry on oeis.org
3392780147, 6960, 934155393840, 53074158495516480, 125380214560150002480, 51856040954589843756960, 7123493021854278627673920, 457358042050198589771226240, 16828247534415852672059972400, 404722169541211889603611092720
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26), this sequence (3392780147*E_28).
-
terms = 10;
E28[x_] = 3392780147 + 6960*Sum[k^27*x^k/(1 - x^k), {k, 1, terms}];
E28[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282474
Coefficients in q-expansion of E_4^8, where E_4 is the Eisenstein series A004009.
Original entry on oeis.org
1, 1920, 1630080, 803228160, 253366181760, 53205643249920, 7498254194403840, 699684356363412480, 42100628403784982400, 1614922125605880493440, 42332208491309728078080, 812648422343847344279040, 12060223533365891970132480
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^8 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Showing 1-2 of 2 results.