cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282401 Eisenstein series E_28(q) (alternate convention E_14(q)), multiplied by 3392780147.

Original entry on oeis.org

3392780147, 6960, 934155393840, 53074158495516480, 125380214560150002480, 51856040954589843756960, 7123493021854278627673920, 457358042050198589771226240, 16828247534415852672059972400, 404722169541211889603611092720
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24), A282356 (657931*E_26), this sequence (3392780147*E_28).
Cf. A282402 (E_4^7), A282403 (E_4^4*E_6^2), A282404 (E_4*E_6^4).

Programs

  • Mathematica
    terms = 10;
    E28[x_] = 3392780147 + 6960*Sum[k^27*x^k/(1 - x^k), {k, 1, terms}];
    E28[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) = 489693897*A282402(n) + 2507636250*A282403(n) + 395450000*A282404(n).

A282474 Coefficients in q-expansion of E_4^8, where E_4 is the Eisenstein series A004009.

Original entry on oeis.org

1, 1920, 1630080, 803228160, 253366181760, 53205643249920, 7498254194403840, 699684356363412480, 42100628403784982400, 1614922125605880493440, 42332208491309728078080, 812648422343847344279040, 12060223533365891970132480
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A008410 (E_4^2), A008411 (E_4^3), A282012 (E_4^4), A282015 (E_4^5), A282330 (E_4^6), A282402 (E_4^7), this sequence (E_4^8).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^8 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Showing 1-2 of 2 results.