cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282446 Call d a recursive divisor of n iff the p-adic valuation of d is a recursive divisor of the p-adic valuation of n for any prime p dividing d; a(n) gives the number of recursive divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Rémy Sigrist, Feb 15 2017

Keywords

Comments

More informally, the prime tower factorization of a recursive divisor of n can be obtained by removing branches from the prime tower factorization of n (the prime tower factorization of a number is defined in A182318).
A recursive divisor of n is also a divisor of n, hence a(n)<=A000005(n) for any n, with equality iff n is cubefree (i.e. n belongs to A004709).
A recursive divisor of n is also a (1+e)-divisor of n, hence a(n)<=A049599(n) for any n, with equality iff the p-adic valuation of n is cubefree for any prime p dividing n.
This sequence first differs from A049599 at n=256: a(256)=4 whereas A049599(256)=5; note that 256=2^(2^3), and 2^3 is not cubefree.

Examples

			The recursive divisors of 40 are: 1, 2, 5, 8, 10 and 40, hence a(40)=6.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Times @@ (1 + a/@ (Last /@ FactorInteger[n])); Array[a, 100] (* Amiram Eldar, Apr 12 2020 *)
  • PARI
    a(n) = my (f=factor(n)); return (prod(i=1, #f~, 1+a(f[i,2])))

Formula

Multiplicative, with a(p^k)=1+a(k) for any prime p and k>0.
a(A014221(n))=n+1 for any n>=0.