cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282472 Numbers k where records occur for d(k^2)/d(k), where d(k) is A000005(k).

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 420, 840, 1260, 2310, 4620, 9240, 13860, 27720, 30030, 60060, 120120, 180180, 360360, 510510, 1021020, 2042040, 3063060, 6126120, 9699690, 19399380, 38798760, 58198140, 116396280, 223092870, 446185740, 892371480
Offset: 1

Views

Author

Daniel Suteu, Feb 18 2017

Keywords

Comments

First 14 terms are similar, with A168264.
The quotients are (1, 3/2, 5/3, 9/4, 5/2, 21/8, 27/8, 15/4, 63/16, 25/6, 81/16, 45/8, 189/32, 25/4, 243/32, 135/16, 567/64, 75/8, 315/32, 729/64, 405/32, 1701/128, 225/16, 945/64, 2187/128, 1215/64, 5103/256, 675/32, 2835/128, 6561/256, 3645/128, 15309/512, 2025/64, 8505/256, 19683/512,...). - Lars Blomberg, Apr 10 2017

Crossrefs

Programs

  • Maple
    A282472 := proc(n)
        option remember;
        local a,a1,rec ;
        if n = 1 then
            1;
        else
            a1 := procname(n-1) ;
            rec := numtheory[tau](a1^2)/numtheory[tau](a1) ;
            for a from a1+1 do
                if numtheory[tau](a^2)/numtheory[tau](a) > rec then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Mar 03 2017
  • Mathematica
    s={}; rm=0; Do[r=DivisorSigma[0, n^2]/DivisorSigma[0, n]; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^4}]; s (* Amiram Eldar, Jul 17 2019 *)
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, if ((newrec = numdiv(n^2)/numdiv(n)) > rec, rec = newrec; print1(n, ", ")););} \\ Michel Marcus, Feb 20 2017
  • Perl
    use ntheory qw(:all);
    for (my ($n, $m) = (1, 0) ; ; ++$n) {
        my $d = divisors($n*$n) / divisors($n);
        if ($m < $d) {
            $m = $d;
            print "$n\n";
        }
    }
    

Extensions

a(32)-a(35) from Lars Blomberg, Apr 10 2017
a(36)-a(37) from Giovanni Resta, Apr 10 2017