cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282504 Expansion of 1/(1 - Sum_{k>=0} x^(2*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 28, 37, 49, 65, 88, 119, 160, 214, 285, 381, 511, 687, 923, 1237, 1656, 2217, 2971, 3985, 5345, 7166, 9603, 12867, 17244, 23115, 30989, 41543, 55684, 74634, 100032, 134081, 179729, 240919, 322935, 432858, 580191, 777680, 1042407, 1397262, 1872911, 2510457
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2017

Keywords

Comments

Number of compositions (ordered partitions) into centered square numbers (A001844).
Conjecture: every number > 1 is the sum of at most 6 centered square numbers.
Extended conjecture: every number > 1 is the sum of at most k+2 centered k-gonal numbers.

Examples

			a(8) = 5 because we have [5, 1, 1, 1], [1, 5, 1, 1], [1, 1, 5, 1], [1, 1, 1, 5] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(2 k (k + 1) + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1/(1 - sum(k=0, 54, x^(2*k*(k + 1) + 1))) + O(x^54)) \\ Indranil Ghosh, Mar 15 2017

Formula

G.f.: 1/(1 - Sum_{k>=0} x^(2*k*(k+1)+1)).
a(n) ~ c / r^n, where r = 0.746043978237212782246711857485153004976647... is the root of the equation sqrt(r) * EllipticTheta(2, 0, r^2) = 2 and c = 0.453173429667590077751072798128748901015122665... . - Vaclav Kotesovec, Feb 17 2017