cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A284202 Numbers m such that phi(sum of divisors of m) = lambda(sum of distinct primes dividing m).

Original entry on oeis.org

3, 6, 10, 22, 34, 142, 214, 382, 862, 2302, 5182, 279934, 944782, 1572862, 1990654, 114791254, 127401982, 339738622, 8153726974, 21743271934, 4696546738174, 112717121716222, 158329674399742, 169075682574334, 300578991243262
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2017

Keywords

Comments

Or numbers m such that A000010(A000203(m)) = A002322(A008472(m)), where phi is the Euler totient function and lambda is Carmichael's function.
Properties of the sequence:
(1) for n > 1, it seems that a(n) = 2*A078883(n) = 2*(Lesser member p of a twin prime pair such that p+1 is 3-smooth).
(2) {a(n)} is included in {A282515(n)}.
(3) for n > 2, a(n)/2 is a prime number congruent to 5 mod 6.

Examples

			34 is in the sequence because A000010(A000203(34)) = A000010(54) = 18, and
A002322(A008472(34)) = A002322(19) = 18.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], EulerPhi@ DivisorSigma[1, #] == CarmichaelLambda[Total@ FactorInteger[#][[All, 1]]] &]
  • PARI
    lambda(n) = lcm(znstar(n)[2]); \\ after Charles R Greathouse IV in A002322
    sopf(n) = vecsum(factor(n)[,1])
    isok(n) = eulerphi(sigma(n)) == lambda(sopf(n)) \\ Indranil Ghosh, Mar 22 2017
Showing 1-1 of 1 results.