A282516 Number T(n,k) of k-element subsets of [n] having a prime element sum; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 2, 4, 1, 0, 0, 3, 5, 2, 2, 0, 0, 3, 7, 6, 4, 2, 0, 0, 4, 9, 10, 11, 7, 1, 0, 0, 4, 11, 18, 21, 13, 7, 2, 0, 0, 4, 14, 26, 34, 31, 20, 7, 3, 0, 0, 4, 18, 37, 53, 59, 51, 32, 11, 2, 0, 0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0
Offset: 0
Examples
Triangle T(n,k) begins: 0; 0, 0; 0, 1, 1; 0, 2, 2, 0; 0, 2, 4, 1, 0; 0, 3, 5, 2, 2, 0; 0, 3, 7, 6, 4, 2, 0; 0, 4, 9, 10, 11, 7, 1, 0; 0, 4, 11, 18, 21, 13, 7, 2, 0; 0, 4, 14, 26, 34, 31, 20, 7, 3, 0; 0, 4, 18, 37, 53, 59, 51, 32, 11, 2, 0; 0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, s) option remember; expand(`if`(n=0, `if`(isprime(s), 1, 0), b(n-1, s)+x*b(n-1, s+n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)): seq(T(n), n=0..16);
-
Mathematica
b[n_, s_] := b[n, s] = Expand[If[n==0, If[PrimeQ[s], 1, 0], b[n-1, s] + x*b[n-1, s+n]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *)