A282533 Primes that are the sum of two proper prime powers (A246547) in more than one way.
41, 89, 113, 137, 593, 857, 2213
Offset: 1
Examples
41 = 2^4 + 5^2 = 2^5 + 3^2. 89 = 2^3 + 3^4 = 2^6 + 5^2. 113 = 2^5 + 3^4 = 2^6 + 7^2. 137 = 2^7 + 3^2 = 2^4 + 11^2. 593 = 2^9 + 3^4 = 2^6 + 23^2. 857 = 2^7 + 3^6 = 2^4 + 29^2. 2213 = 2^4 + 13^3 = 2^2 + 47^2.
Crossrefs
Programs
-
MATLAB
N = 10^8; % to get all terms <= N C = sparse(1,N); for p = primes(sqrt(N)) C(p .^ [2:floor(log(N)/log(p))]) = 1; end R = zeros(1,N); for k = 2: floor(log2(N)) R((2^k+1):N) = R((2^k+1):N) + C(1:(N-2^k)); end P = primes(N); P(R(P) > 1.5) % Robert Israel, Feb 17 2017
-
Maple
N:= 10^6: # to get all terms <= N B:= Vector(N): C:= Vector(N): for k from 2 to ilog2(N) do B[2^k]:= 1 od: p:= 2: do p:= nextprime(p); if p^2 > N then break fi; for k from 2 to floor(log[p](N)) do C[p^k]:= 1 od: od: R:= SignalProcessing:-Convolution(B,C): select(t -> isprime(t) and R[t-1] > 1.5, [seq(i,i=3..N,2)]); # Robert Israel, Feb 17 2017
-
Mathematica
Select[Prime@ Range[10^3], Function[n, Count[Transpose@{n - #, #}, w_ /; Times @@ Boole@ Map[And[PrimePowerQ@ #, ! PrimeQ@ #] &, w] > 0] >= 2 &@ Range[4, Floor[n/2]]]] (* or *) With[{n = 10^8}, Keys@ Select[#, Length@ # > 1 &] &@ GroupBy[#, First] &@ SortBy[Transpose@ {Map[Total, #], #}, First] &@ Select[Union@ Map[Sort, Tuples[#, 2]], PrimeQ@ Total@ # &] &@ Flatten@ Map[#^Range[2, Log[#, Prime@ n]] &, Array[Prime@ # &, Floor@ Sqrt@ n]]] (* Michael De Vlieger, Feb 19 2017, latter program Version 10 *)
-
PARI
is(n) = if(!ispseudoprime(n), return(0), my(x=n-1, y=1, i=0); while(y < x, if(isprimepower(x) > 1 && isprimepower(y) > 1, if(i==0, i++, return(1))); y++; x--)); 0 \\ Felix Fröhlich, Feb 18 2017
-
PARI
has(p)=my(t,q); p>40 && sum(k=2,logint(p-9,2), t=2^k; sum(e=2,logint(p-t,3), ispower(p-t,e,&q) && isprime(q)))>1 list(lim)=my(v=List(),t,q); lim\=1; if(lim<9,lim=9); for(k=2,logint(lim-9,2), t=2^k; for(e=2,logint(lim-t,3), forprime(p=3,sqrtnint(lim-t,e), q=t+p^e; if(isprime(q) && has(q), listput(v,q))))); Set(v) \\ Charles R Greathouse IV, Feb 18 2017
Comments