cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282537 Coefficients of the '5th-order' mock theta function Psi(q) with a(0)=1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 4, 4, 5, 5, 7, 6, 8, 8, 9, 9, 12, 11, 14, 14, 16, 16, 20, 19, 23, 24, 27, 27, 32, 32, 37, 38, 43, 44, 51, 51, 58, 61, 67, 69, 78, 80, 89, 93, 102, 106, 118, 121, 134, 140, 153, 159, 175, 181, 198, 207, 224, 234
Offset: 0

Views

Author

Michael Somos, Feb 18 2017

Keywords

Comments

In Ramanujan's lost notebook the generating function is denoted by psi(q) on pages 18 and 20, however on page 20 there is a "-1" first term.

Examples

			G.f. = 1 + x^2 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 18, 20

Crossrefs

Essentially the same as A053267.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(5 k^2) / (QPochhammer[ x^2, x^5, k + 1] QPochhammer[ x^3, x^5, k]) // FunctionExpand, {k, 0, Sqrt[n/5]}], {x, 0, n}]];
    a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[1 + 24(n + 2)/5]}, SeriesCoefficient[ Sum[ -(-1)^k x^(5 k (3 k + 1)/2 - 2) / (1 - x^(5 k - 2)), {k, Quotient[m + 1, -6], Quotient[m - 1, 6]}] / QPochhammer[ x^5], {x, 0, n}]]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n\5), x^(5*k^2) / prod(i=1, 5*k+2, 1 - if( i%5==2 || i%5==3, x^i), 1 + x * O(x^(n - 5*k^2)))), n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = sqrtint(1 + 24*(n+2)\5); A = x * O(x^n); polcoeff( sum(k=(m + 1)\-6, (m - 1)\6, -(-1)^k * x^(5*k*(3*k + 1)/2 - 2) / (1 - x^(5*k - 2)), A) / eta(x^5 + A), n))};

Formula

G.f.: Sum_{k>=0} x^(5*k^2) / ((1 - x^2) * (1 - x^3) * (1 - x^7) * (1 - x^8)...(1 - x^(5*k+2))).
G.f.: ( Sum_{k in Z} -(-1)^k * x^(5*k*(3*k + 1)/2 - 2) / (1 - x^(5*k - 2)) ) / ( Sum_{k in Z} (-1)^k * x^(5*k*(3*k - 1)) ).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (5^(3/4)*sqrt(2*phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019