A282538 Odd integers n with the property that the largest prime factor of n^2+4 is less than n.
11, 29, 49, 59, 99, 111, 121, 127, 141, 161, 179, 199, 205, 211, 213, 219, 237, 247, 261, 283, 289, 309, 311, 335, 359, 369, 387, 393, 411, 417, 419, 433, 441, 469, 479, 485, 521, 523, 527, 535, 569, 581, 595, 603, 611, 619, 621, 633, 643, 679, 691, 705, 711, 715, 723, 729, 739, 741, 749, 759
Offset: 1
Keywords
Examples
Examples: 5 is not on this list, and 17-12=5 while 17+12=29 and (17)(12)==1 mod 29. 9 is not on this list, and 13-4=9 while 13+4=17 and (13)(4)==1 mod 17. 13 is not on this list, and 93-80=13 while 93+80=173 and (93)(80)==1 mod 173. Note that 5^2+4=29, 9^2+4=85=17(5), and 13^2+4=173
Crossrefs
Cf. A256011 (generated similarly, but for n^2+1 instead of n^2+4).
Programs
-
Mathematica
fQ[n_] := FactorInteger[n^2 + 4][[-1, 1]] < n; Select[2 Range[380] - 1, fQ] (* Robert G. Wilson v, Feb 17 2017 *)
-
PARI
isok(n) = (n%2) && vecmax(factor(n^2+4)[,1]) < n; \\ Michel Marcus, Feb 18 2017
Extensions
a(22) onward from Robert G. Wilson v, Feb 17 2017
Comments