A282544 Expansion of (phi(x)^4 + 3*phi(x^3)^4) / 4 in powers of x where phi() is a Ramanujan theta function.
1, 2, 6, 14, 6, 12, 42, 16, 6, 50, 36, 24, 42, 28, 48, 84, 6, 36, 150, 40, 36, 112, 72, 48, 42, 62, 84, 158, 48, 60, 252, 64, 6, 168, 108, 96, 150, 76, 120, 196, 36, 84, 336, 88, 72, 300, 144, 96, 42, 114, 186, 252, 84, 108, 474, 144, 48, 280, 180, 120, 252
Offset: 0
Examples
G.f. = 1 + 2*x + 6*x^2 + 14*x^3 + 6*x^4 + 12*x^5 + 42*x^6 + 16*x^7 + 6*x^8 + ... a(4) = 6 with solutions (x, y, z, w) = {(1, 1, 1, 1), (1, 1, 1, -1), (0, 0, 0, 2)} and their negatives. - _Michael Somos_, Jun 23 2018
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Magma
A := Basis( ModularForms( Gamma0(12), 2), 60); A[1] + 2*A[2] + 6*A[3] + 14*A[4] + 6*A[5];
-
Mathematica
a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[n, # {1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0}[[Mod[#, 12, 1]]] &]]; a[ n_] := If[ n < 1, Boole[n == 0], 2 Times @@ (Which[# < 3, 2 + (-1)^#, # == 3, 3^(#2 + 1) - 2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger@n)]; a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^4 + 3 * EllipticTheta[ 3, 0, x^3]^4) / 4, {x, 0, n}];
-
PARI
{a(n) = if( n<1, n==0, 2 * sumdiv(n, d, d * [0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1][d%12+1]))};
-
PARI
{a(n) = if( n<1, n==0, my(A = factor(n), p, e); 2 * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 3, p==3, 3^(e+1) - 2, (p^(e+1) - 1) / (p - 1))))};
-
PARI
{a(n) = if( n<0, 0, my(A); A = x * O(x^n); polcoeff( (sum(k=1, sqrtint(n), 2 * x^k^2, 1 + A)^4 + 3 * sum(k=1, sqrtint(n\3), 2 * x^(3*k^2), 1 + A)^4) / 4, n))};
Formula
Expansion of a(x^2) * phi(x) * phi(x^3) in powers of x where a() is a cubic AGM theta function and phi() is a Ramanujan theta function.
Expansion of (chi(x) * chi(x^3))^3 * (psi(x)^4 + 3*x*psi(x^3)^4) in powers of x where psi(), chi() are Ramanujan theta functions.
a(n) = 2*b(n) where b() is multiplicative with a(0) = 1, b(2^e) = 3 if e>0, b(3^e) = 3^(e+1) - 2, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: ((Sum_{k in Z} x^k^2)^4 + 3 * (Sum_{k in Z} x^(3*k^2))^4) / 4.
G.f.: 1 + 2 * Sum_{k>0} F(k, x) + 6 * Sum_{k>0} F(3*k, x) where F(k, x) = x^k / (1 + (-x)^k)^2.
G.f.: 1 + 2 * Sum_{k>0} F(k, x) + 2 * Sum_{k>0} F(3*k, x) where F(k, x) = k * x^k / (1 + (-x)^k).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/6 = 1.644934... (A013661). - Amiram Eldar, Dec 29 2023
Comments