A282568 Number of compositions (ordered partitions) of n into abundant numbers (A005101).
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 5, 0, 2, 0, 2, 0, 8, 0, 5, 0, 0, 0, 13, 0, 8, 0, 5, 0, 21, 0, 16, 0, 5, 0, 37, 0, 26, 0, 14, 0, 55, 0, 48, 0, 24, 0, 99, 0, 82, 0, 48, 0, 154, 0, 150, 0, 85, 0, 265, 0, 248, 0, 163, 0, 433, 0, 450, 0, 290
Offset: 0
Keywords
Examples
a(30) = 3 because we have [30], [18, 12] and [12, 18].
Links
- Antti Karttunen, Table of n, a(n) for n = 0..1221 (terms 0..200 from Indranil Ghosh)
- Eric Weisstein's World of Mathematics, Abundant Number
- Index entries for sequences related to compositions
Programs
-
Mathematica
nmax = 95; CoefficientList[Series[1/(1 - Sum[Boole[DivisorSigma[1, k] > 2 k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
-
PARI
Vec(1/(1 - sum(k=1, 95, (sigma(k)>2*k)*x^k)) + O(x^95)) \\ Indranil Ghosh, Mar 15 2017
Formula
G.f.: 1/(1 - Sum_{k>=1} x^A005101(k)).