A282583 Number of compositions (ordered partitions) of n into quarter-squares (A002620).
1, 1, 2, 3, 6, 10, 19, 33, 60, 107, 193, 345, 621, 1113, 1999, 3586, 6439, 11554, 20741, 37223, 66814, 119916, 215237, 386310, 693375, 1244494, 2233686, 4009113, 7195757, 12915268, 23180946, 41606232, 74676840, 134033474, 240569601, 431785583, 774989076, 1390986741, 2496608365, 4481029864, 8042762869
Offset: 0
Keywords
Examples
a(4) = 6 because we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
Links
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[1/(1 - Sum[x^Floor[k^2/4], {k, 2, nmax}]), {x, 0, nmax}], x]
-
PARI
Vec(1/(1 - sum(k=2, 40, x^floor(k^2/4)) + O(x^41))) \\ Indranil Ghosh, Mar 15 2017
Formula
G.f.: 1/(1 - Sum_{k>=2} x^(floor(k^2/4))).