cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A282615 Number of self-conjugate separable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).

Original entry on oeis.org

0, 1, 1, 3, 4, 9, 20, 35, 102, 160, 736, 930, 5972, 6766, 59017, 61814, 671651, 675379, 8844028, 8675583, 130880467, 126385830, 2163551657, 2049560059, 39112954305, 36883483406, 768337929193, 720918897940, 16279025598443, 15303083773040, 373743187469167, 349148771223261, 9095126347788632
Offset: 1

Views

Author

Peter Kagey, Feb 19 2017

Keywords

Comments

An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705).
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |

Examples

			For n = 4 the a(4) = 3 solutions are:
  (10,12,11),(7,9,8),(4,6,5),(1,3,2),
  (10,12,11),(5,9,7),(4,8,6),(1,3,2), and
  (8,12,10),(7,11,9),(2,6,4),(1,5,3).
		

Crossrefs

All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.

Formula

a(n) = A282616(n) - A279197(n).
a(n) = A279199(n) - A282618(n).
a(n) = Sum_{i=1..floor(n/2)} A202705(i) * (A282616(n-2*i) if n>2*i else 1) = Sum_{i=1..floor(n/2)} A104429(i) * (A279197(n-2*i) if n>2*i else 1). - Martin Fuller, Jul 15 2025

Extensions

a(11)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
a(18)-a(24) from Bert Dobbelaere, May 29 2025
a(25)-a(33) from Martin Fuller, Jul 15 2025

A282616 Number of self-conjugate solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).

Original entry on oeis.org

1, 2, 3, 5, 15, 20, 75, 93, 588, 602, 4954, 4854, 51068, 48779, 597554, 567644, 8039742, 7634924, 120721322, 114398957, 2017517155, 1889828995, 36749338386, 34451341024, 726198499999, 679116640274, 15459385244039, 14509756794668, 356501015466981, 332645434167718, 8701627694048482
Offset: 1

Views

Author

Peter Kagey, Feb 19 2017

Keywords

Comments

A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |

Examples

			For n = 3 the a(3) = 3 solutions are:
  (7,9,8),(4,6,5),(1,3,2),
  (3,9,6),(2,8,5),(1,7,4), and
  (6,8,7),(2,4,3),(1,9,5).
		

Crossrefs

Formula

a(n) = A282615(n) + A279197(n).
a(n) = A104429(n) - A282619(n).

Extensions

a(11)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
a(18)-a(24) from Bert Dobbelaere, May 29 2025
a(25)-a(31) from Martin Fuller, Jul 15 2025

A282617 Number of non-self-conjugate inseparable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).

Original entry on oeis.org

0, 0, 0, 4, 14, 104, 594, 3988, 29188, 227588, 1983482, 18398780, 188210020, 2030025592, 23828759942, 293948660282, 3909402733418, 54360500959634, 806312590045382
Offset: 1

Views

Author

Peter Kagey, Feb 19 2017

Keywords

Comments

An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705).
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |

Examples

			For n = 4 the a(4) = 4 solutions are:
(7,11,9),(4,12,8),(2,10,6),(1,5,3),
(9,11,10),(4,8,6),(2,12,7),(1,5,3),
(8,12,10),(3,11,7),(2,6,4),(1,9,5), and
(8,12,10),(5,9,7),(2,4,3),(1,11,6).
		

Crossrefs

Formula

a(n) = A282619(n) - A282618(n).
a(n) = A202705(n) - A279197(n).

Extensions

a(10)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
a(18)-a(19) from Martin Fuller, Jul 15 2025

A282619 Number of non-self-conjugate solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).

Original entry on oeis.org

0, 0, 2, 10, 40, 212, 1086, 6550, 43978, 326462, 2704096, 24307174, 240782702, 2546166908, 29250772016, 355838290758, 4658858733922, 64127558524832, 940320570514884
Offset: 1

Views

Author

Peter Kagey, Feb 19 2017

Keywords

Comments

A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |

Examples

			For n = 3 the a(3) = 3 solutions are
(5,9,7),(4,8,6),(1,3,2),
(7,9,8),(2,6,4),(1,5,3).
		

Crossrefs

Formula

a(n) = A282617(n) + A282618(n).
a(n) = A104429(n) - A282616(n).

Extensions

a(11)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
a(18)-a(19) from Martin Fuller, Jul 15 2025
Showing 1-4 of 4 results.