A282626 Exponential expansion of the real root y = y(x) of y^3 - 3*x*y - 1.
1, 1, 0, -2, 8, 0, -320, 2800, 0, -344960, 4659200, 0, -1172864000, 21423001600, 0, -9117844736000, 209945415680000, 0, -135381758640128000, 3761801958154240000, 0, -3421097040836034560000, 111349337961365504000000, 0, -135776499356700539617280000
Offset: 0
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, ch, XI, pp. 186-211.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..400
Crossrefs
Cf. A282627.
Programs
-
Magma
[1,1] cat [(&*[n+1-3*j: j in [1..(n-1)]]): n in [2..25]]; // G. C. Greubel, Mar 29 2019
-
Mathematica
Table[Product[n+1-3*j, {j,1,n-1}], {n,0,25}] (* G. C. Greubel, Mar 29 2019 *)
-
PARI
vector(25, n, n--; prod(j=1,n-1, (n+1-3*j))) \\ G. C. Greubel, Mar 29 2019
-
Sage
[1] + [product(n+1-3*j for j in (1..(n-1))) for n in (1..25)] # G. C. Greubel, Mar 29 2019
Formula
a(n) = Product_{j=1..n-1} (n + 1 - 3*j), n >=0 (empty product = 1).
E.g.f.: ((1 + sqrt(1-4*x^3))/2)^(1/3) + x/((1 + sqrt(1-4*x^3))/2)^(1/3).
E.g.f.: ((1 + sqrt(1-4*x^3))/2)^(1/3) + ((1 - sqrt(1-4*x^3))/2)^(1/3).
Extensions
More terms from G. C. Greubel, Mar 29 2019
Comments