cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282629 Sheffer triangle (exp(x), exp(3*x) - 1). Named S2[3,1].

Original entry on oeis.org

1, 1, 3, 1, 15, 9, 1, 63, 108, 27, 1, 255, 945, 594, 81, 1, 1023, 7380, 8775, 2835, 243, 1, 4095, 54729, 109890, 63180, 12393, 729, 1, 16383, 395388, 1263087, 1151010, 387828, 51030, 2187, 1, 65535, 2816865, 13817034, 18752391, 9658278, 2133054, 201204, 6561, 1, 262143, 19914660, 146620935, 285232185, 210789621, 69502860, 10825650, 767637, 19683
Offset: 0

Views

Author

Wolfdieter Lang, Apr 03 2017

Keywords

Comments

For Sheffer triangles (infinite lower triangular exponential convolution matrices) see the W. Lang link under A006232, with references).
The e.g.f. for the sequence of column m is (Sheffer property) exp(x)*(exp(3*x) - 1)^m/m!.
This is a generalization of the Sheffer triangle Stirling2(n, m) = A048993(n, m) denoted by (exp(x), exp(x)-1), which could be named S2[1,0].
The a-sequence for this Sheffer triangle has e.g.f. 3*x/log(1+x) and is 3*A006232(n)/ A006233(n) (Cauchy numbers of the first kind).
The z-sequence has e.g.f. (3/(log(1+x)))*(1 - 1/(1+x)^(1/3)) and is A284857(n) / A284858(n).
The main diagonal gives A000244.
The row sums give A284859. The alternating row sums give A284860.
The triangle appears in the o.g.f. G(n, x) of the sequence {(1 + 3*m)^n}{m>=0}, as G(n, x) = Sum{m=0..n} T(n, m)*m!*x^m/(1-x)^(m+1), n >= 0. Hence the corresponding e.g.f. is, by the linear inverse Laplace transform, E(n, t) = Sum_{m >=0}(1 + 3*m)^n t^m/m! = exp(t)*Sum_{m=0..n} T(n, m)*t^m.
The corresponding Euler triangle with reversed rows is rEu(n, k) = Sum_{m=0..k} (-1)^(k-m)*binomial(n-m, k-m)*T(n, k)*k!, 0 <= k <= n. This is A225117 with row reversion.
The first column k sequences divided by 3^k are A000012, A002450 (with a leading 0), A016223, A021874. For the e.g.f.s and o.g.f.s see below. - Wolfdieter Lang, Apr 09 2017
From Wolfdieter Lang, Aug 09 2017: (Start)
The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,m)*x^m of the Sheffer triangle S2[d,a] satisfy, as special polynomials of the Boas-Buck class, the identity (see the reference, and we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)
(E_x - n*1)*R(d,a;n,x) = - n*a*R(d,a;n-1,x) - Sum_{k=0..n-1} binomial(n, k+1)*(-d)^(k+1)*Bernoulli(k+1)*E_x*R(d,a;n-1-k,x), with E_x = x*d/dx (Euler operator).
This entails a recurrence for the sequence of column m, for n > m:
T(d,a;n,m) = (1/(n - m))*[(n/2)*(2*a + d*m)*T(d,a;n-1,m) + m*Sum_{p=m..n-2} binomial(n,p)(-d)^(n-p)*Bernoulli(n-p)*T(d,a;p,m)], with input T(d,a;n,n) = d^n. For the present [d,a] = [3,1] case see the formula and example sections below. - Wolfdieter Lang, Aug 09 2017 (End)
The inverse of this triangular Sheffer matrix S2[3,1] is S1[3,1] with rational elements S1[3,1](n, k) = (-1)^(n-k)*A286718(n, k)/3^k. - Wolfdieter Lang, Nov 15 2018
Named after the American mathematician Isador Mitchell Sheffer (1901-1992). - Amiram Eldar, Jun 19 2021

Examples

			The triangle T(n, m) begins:
  n\m 0      1        2         3         4         5        6        7      8     9
  0:  1
  1:  1      3
  2:  1     15        9
  3:  1     63      108        27
  4:  1    255      945       594        81
  5:  1   1023     7380      8775      2835       243
  6:  1   4095    54729    109890     63180     12393      729
  7:  1  16383   395388   1263087   1151010    387828    51030     2187
  8:  1  65535  2816865  13817034  18752391   9658278  2133054   201204   6561
  9:  1 262143 19914660 146620935 285232185 210789621 69502860 10825650 767637 19683
  ...
------------------------------------------------------------------------------------
Nontrivial recurrence for m=0 column from z-sequence: T(4,0) = 4*(1*1 + 63*(-1/6) + 108*(11/54) + 27*(-49/108)) = 1.
Recurrence for m=2 column from a-sequence: T(4, 2) = (4/2)*(1*63*3 + 2*108*(3/2) + 3*27*(-3/6)) = 945.
Recurrence for row polynomial R(3, x) (Meixner type): ((3*x + 1) + 3*x*d_x)*(1 + 15*x + 9*x^2) = 1 + 63*x + 108*x^2 + 27*x^3.
E.g.f. and o.g.f. of n = 1 powers {(1 + 3*m)^1}_{m>=0} A016777: E(1, x) = exp(x) * (T(1, 0) + T(1, 1)*x) = exp(x)*(1+3*x). O.g.f.: G(1, x) = T(1, 0)*0!/(1-x) + T(1, 1)*1!*x/(1-x)^2 = (1+2*x)/(1-x)^2.
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (1/2)*(2*(2 + 3*2)*T(3, 2) + 2*6*(-3)^2*bernoulli(2)*T(2, 2)) = (1/2)*(16*108 + 12*9*(1/6)*9) = 945. - _Wolfdieter Lang_, Aug 09 2017
		

References

  • Ralph P. Boas, Jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 08 2017 *)
  • PARI
    T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
    for(n=0, 9, for(m=0, n, print1(T(n, m),", ");); print();) \\ Indranil Ghosh, Apr 08 2017

Formula

A nontrivial recurrence for the column m=0 entries T(n, 0) = 1 from the z-sequence given above: T(n,0) = n*Sum_{j=0..n-1} z(j)*T(n-1,j), n >= 1, T(0, 0) = 1.
Recurrence for column m >= 1 entries from the a-sequence given above: T(n, m) = (n/m)*Sum_{j=0..n-m} binomial(m-1+j, m-1)*a(j)*T(n-1, m-1+j), m >= 1.
Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((3*x+1) + 3*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.
T(n, m) = Sum_{k=0..m} binomial(m,k)*(-1)^(k-m)*(1 + 3*k)^n/m!, 0 <= m <= n.
E.g.f. of triangle: exp(z)*exp(x*(exp(3*z)-1)) (Sheffer type).
E.g.f. for sequence of column m is exp(x)*((exp(3*x) - 1)^m)/m! (Sheffer property).
From Wolfdieter Lang, Apr 09 2017: (Start)
Standard three-term recurrence: T(n, m) = 0 if n < m, T(n,-1) = 0, T(0, 0) = 1, T(n, m) = 3*T(n-1, m-1) + (1+3*m)*T(n-1, m) for n >= 1. From the T(n, m) formula. Compare with the recurrence of S2[3,2] given in A225466.
The o.g.f. for sequence of column m is 3^m*x^m/Product_{j=0..m} (1 - (1+3*j)*x). (End)
In terms of Stirling2 = A048993: T(n, m) = Sum_{k=0..n} binomial(n, k)* 3^k*Stirling2(k, m), 0 <= m <= n. - Wolfdieter Lang, Apr 13 2017
Boas-Buck recurrence for column sequence m: T(n, m) = (1/(n - m))*((n/2)*(2 + 3*m)*T(n-1, m) + m*Sum_{p=m..n-2} binomial(n,p)*(-3)^(n-p)*Bernoulli(n-p)*T(p, m)), for n > m >= 0, with input T(m, m) = 3^m. See a comment above. - Wolfdieter Lang, Aug 09 2017