A284859
Row sums of the Sheffer triangle (exp(x), exp(3*x)-1) given in A282629.
Original entry on oeis.org
1, 4, 25, 199, 1876, 20257, 245017, 3266914, 47450923, 743935375, 12497579698, 223619318215, 4240423494685, 84855613320004, 1785410320771933, 39373503608087299, 907548770965519660, 21810536356271794549, 545305573054110017125, 14155835044848094831018
Offset: 0
-
T[n_, m_]:= Sum[Binomial[m, k] (-1)^(k - m) (1 + 3k)^n/m!, {k, 0, m}]; Table[Sum[T[n, m], {m, 0, n}], {n, 0, 20}] (* Indranil Ghosh, Apr 10 2017 *)
Table[Sum[3^k*Binomial[n,k]*BellB[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 22 2022 *)
-
T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
a(n) = sum(m=0, n, T(n, m)); \\ Indranil Ghosh, Apr 10 2017
-
from sympy import binomial, factorial
def T(n, m): return sum([binomial(m, k) * (-1)**(k - m) * (1 + 3*k)**n for k in range(m + 1)])//factorial(m)
def a(n): return sum([T(n, k) for k in range(n + 1)])
print([a(n) for n in range(20)]) # Indranil Ghosh, Apr 10 2017
A284861
Triangle read by rows: T(n, k) = S2[3,1](n, k)*k! with the Sheffer triangle S2[3,1] = (exp(x), exp(3*x) -1) given in A282629.
Original entry on oeis.org
1, 1, 3, 1, 15, 18, 1, 63, 216, 162, 1, 255, 1890, 3564, 1944, 1, 1023, 14760, 52650, 68040, 29160, 1, 4095, 109458, 659340, 1516320, 1487160, 524880, 1, 16383, 790776, 7578522, 27624240, 46539360, 36741600, 11022480, 1, 65535, 5633730, 82902204, 450057384, 1158993360, 1535798880, 1014068160, 264539520
Offset: 0
The triangle T(n, k) begins
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 3
2: 1 15 18
3: 1 63 216 162
4: 1 255 1890 3564 1944
5: 1 1023 14760 52650 68040 29160
6: 1 4095 109458 659340 1516320 1487160 524880
7: 1 16383 790776 7578522 27624240 46539360 36741600 11022480
...
row n=8: 1 65535 5633730 82902204 450057384 1158993360 1535798880 1014068160 264539520,
row n=9: 1 262143 39829320 879725610 6845572440 25294754520 50042059200 54561276000 30951123840 7142567040,
row n=10: 1 1048575 280378098 9155719980 99549149040 507399658920 1406104706160 2251231315200 2083248720000 1035672220800 214277011200.
------------------------------------------------------------------
T(2, 1) = -1 + 4^2 = 15 = 2*A225117(2,2) + 1*A225117(2,1) = 2*1 + 1*13.
- P. Bala, Deformations of the Hadamard product of power series
- M. Dukes, C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Cf.
A000012,
A002450,
A016223,
A021874,
A032031,
A111577,
A122803,
A131689, |
A151919|,
A225117,
A282629,
A019538,
A145901.
-
Table[Sum[Binomial[k, m] (-1)^(k - m) (1 + 3m)^n, {m, 0, k}], {n, 0, 10}, {k, 0, n}]// Flatten (* Indranil Ghosh, Apr 09 2017 *)
-
for(n=0, 10, for(k=0, n, print1(sum(m=0, k, binomial(k, m) * (-1)^(k - m)*(1 + 3*m)^n),", "); ); print();) \\ Indranil Ghosh, Apr 09 2017
-
# Indranil Ghosh, Apr 09 2017
from sympy import binomial
for n in range(11):
print([sum([binomial(k, m)*(-1)**(k - m)*(1 + 3*m)**n for m in range(k + 1)]) for k in range(n + 1)])
A284860
Alternating row sums of the Sheffer triangle (exp(x), exp(3*x) - 1) given in A282629.
Original entry on oeis.org
1, -2, -5, 19, 178, 175, -7739, -72056, -33179, 6899311, 87861076, 215532301, -11151014291, -222077806202, -1563185592617, 22953386817343, 878911293113026, 12330887396253691, 1416506544326449, -4284948239134152536
Offset: 0
-
Fold[#2 - #1 &, Reverse@ #] & /@ Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 19}, {m, 0, n}] (* Michael De Vlieger, Apr 08 2017 *)
-
T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
a(n) = sum(m=0, n, (-1)^m*T(n, m)); \\ Indranil Ghosh, Apr 10 2017
A321329
One third of the numerators of a Boas-Buck sequence for the triangular Sheffer matrix S2[3,1] = A282629.
Original entry on oeis.org
1, 1, 0, -3, 0, 9, 0, -81, 0, 81, 0, -167913, 0, 2187, 0, -23731137, 0, 287811387, 0, -10310604939, 0, 13761310401, 0, -125613568885131, 0, 3146863577139, 0, -5409187422305481, 0, 8241860346410471769
Offset: 0
The rationals beta begin: {3/2, 3/4, 0, -9/80, 0, 27/1120, 0, -243/44800, 0, 243/197120, 0, -503739/1793792000, 0, 6561/102502400, 0, -71193411/4879114240000, 0, 863434161/259568877568000, 0, -30931814817/40789395046400000, 0, ...}.
-
a[n_] := Numerator[(-3)^(n+1)*BernoulliB[n+1]/(n+1)!/3]; Array[a, 30, 0] (* Amiram Eldar, Nov 15 2018 *)
A321330
Denominators of a Boas-Buck sequence for the triangular Sheffer matrix S2[3,1] = A282629.
Original entry on oeis.org
2, 4, 1, 80, 1, 1120, 1, 44800, 1, 197120, 1, 1793792000, 1, 102502400, 1, 4879114240000, 1, 259568877568000, 1, 40789395046400000, 1, 238803367362560000, 1, 9561686829196902400000, 1, 1050734816395264000000, 1, 7922540515620290560000000, 1, 52951091790199773986816000000
Offset: 0
-
a[n_] := Denominator[(-3)^(n+1)*BernoulliB[n+1]/(n+1)!]; Array[a, 30, 0] (* Amiram Eldar, Nov 15 2018 *)
A290316
Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A282629 (S2[3,1] generalized Stirling2), for n >= 0.
Original entry on oeis.org
1, 1, 6, 1, 48, 90, 1, 234, 2214, 2160, 1, 996, 27432, 114588, 71280, 1, 4062, 260748, 2791800, 6770628, 2993760, 1, 16344, 2178630, 48256344, 280652364, 454137840, 152681760, 1, 65490, 16966530, 691711920, 7846782660, 29157089832, 34236464400, 9160905600, 1, 262092, 126820980, 8851303620, 174637926180, 1219804572672, 3187159638984, 2871984146400, 632102486400, 1, 1048518, 924701832, 105253405560, 3359003385600, 39425596747272, 188635513271256, 369150976563264, 265665182896800, 49303993939200
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 6
2: 1 48 90
3: 1 234 2214 2160
4: 1 996 27432 114588 71280
5: 1 4062 260748 2791800 6770628 2993760
6: 1 16344 2178630 48256344 280652364 454137840 152681760
7: 1 65490 16966530 691711920 7846782660 29157089832 34236464400 9160905600
...
n = 8: 1 262092 126820980 8851303620 174637926180 1219804572672 3187159638984 2871984146400 632102486400,
n = 9: 1 1048518 924701832 105253405560 3359003385600 39425596747272 188635513271256 369150976563264 265665182896800 49303993939200.
...
n = 3: The o.g.f. of the 4th diagonal sequence of A282629, [1, 255, 7380, ...], is P(3, x) = (1 + 234*x + 2214*x^2 + 2160*x^3)/(1 - 3*x)^7.
A048993
Triangle of Stirling numbers of 2nd kind, S(n,k), n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0
The triangle S(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
0: 1
1: 0 1
2: 0 1 1
3: 0 1 3 1
4: 0 1 7 6 1
5: 0 1 15 25 10 1
6: 0 1 31 90 65 15 1
7: 0 1 63 301 350 140 21 1
8: 0 1 127 966 1701 1050 266 28 1
9: 0 1 255 3025 7770 6951 2646 462 36 1
10: 0 1 511 9330 34105 42525 22827 5880 750 45 1
11: 0 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1
12: 0 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1
... reformatted and extended - _Wolfdieter Lang_, Oct 16 2014
Completely symmetric function S(4, 2) = h^{(2)}_2 = 1^2 + 2^2 + 1^1*2^1 = 7; S(5, 2) = h^{(2)}_3 = 1^3 + 2^3 + 1^2*2^1 + 1^1*2^2 = 15. - _Wolfdieter Lang_, May 26 2017
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: S(5, 3) = S(4, 2) + 2*S(4, 3) = 7 + 3*6 = 25.
Boas-Buck recurrence for column m = 3, and n = 5: S(5, 3) = (3/2)*((5/2)*S(4, 3) + 10*Bernoulli(2)*S(3, 3)) = (3/2)*(15 + 10*(1/6)*1) = 25. (End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
- J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
- J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
- David W. Wilson, Table of n, a(n) for n = 0..10010
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Peter Bala, The white diamond product of power series
- Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
- Paul Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Xi Chen, Bishal Deb, Alexander Dyachenko, Tomack Gilmore, and Alan D. Sokal, Coefficientwise total positivity of some matrices defined by linear recurrences, arXiv:2012.03629 [math.CO], 2020.
- R. M. Dickau, Stirling numbers of the second kind
- Gerard Duchamp, Karol A. Penson, Allan I. Solomon, Andrej Horzela, and Pawel Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- FindStat - Combinatorial Statistic Finder, The number of blocks in the set partition.
- Bill Gosper, Colored illustrations of triangle of Stirling numbers of second kind read mod 2, 3, 4, 5, 6, 7
- W. Steven Gray and Makhin Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- Aoife Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Claus Michael Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv preprint arXiv:1502.06553 [math.RT], 2015.
- X.-T. Su, D.-Y. Yang, and W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
See especially
A008277 which is the main entry for this triangle.
-
a048993 n k = a048993_tabl !! n !! k
a048993_row n = a048993_tabl !! n
a048993_tabl = iterate (\row ->
[0] ++ (zipWith (+) row $ zipWith (*) [1..] $ tail row) ++ [1]) [1]
-- Reinhard Zumkeller, Mar 26 2012
-
for n from 0 to 10 do seq(Stirling2(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Nov 01 2006
-
t[n_, k_] := StirlingS2[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v *)
-
create_list(stirling2(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2), ", ")); print()); \\ Joerg Arndt, Apr 21 2013
A111577
Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
Offset: 1
T(5,3) = T(4,2) + 7*T(4,3) = 21 + 7*12 = 105.
The triangle starts in row n = 1 as:
1;
1, 1;
1, 5, 1;
1, 21, 12, 1;
1, 85, 105, 22, 1;
Connection constants: Row 4: [1, 21, 12, 1] so
x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - _Peter Bala_, Jan 27 2015
From _Peter Bala_, Feb 26 2025: (Start)
The array factorizes as
/1 \ /1 \/1 \/1 \
|1 1 | |1 1 ||0 1 ||0 1 |
|1 5 1 | = |1 4 1 ||0 1 1 ||0 0 1 | ...
|1 21 12 1 | |1 13 7 1 ||0 1 4 1 ||0 0 1 1 |
|1 85 105 22 1| |1 44 34 10 1||0 1 13 7 1 ||0 0 1 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - x), x/(1 - 3*x)). Cf. A193843. (End)
- Peter Bala, A 3 parameter family of generalized Stirling numbers, 2015.
- Peter Bala, Factorising (r,b)-Stirling arrays
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Ruedi Suter, Two Analogues of a Classical Sequence, Journal of Integer Sequences, Vol. 3 (2000), Article 00.1.8. [_Paul Barry_, Nov 26 2008]
-
A111577 := proc(n,k) option remember; if k = 1 or k = n then 1; else procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; fi; end:
seq( seq(A111577(n,k),k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
-
T[, 1] = 1; T[n, n_] = 1;
T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)
A154537
Triangle T(n,m) read by rows: let p(n,x) = exp(-x) * Sum_{m >= 0} (2*m + 1)^n * x^m/m!; then T(n,m) = [x^m] p(n,x).
Original entry on oeis.org
1, 1, 2, 1, 8, 4, 1, 26, 36, 8, 1, 80, 232, 128, 16, 1, 242, 1320, 1360, 400, 32, 1, 728, 7084, 12160, 6320, 1152, 64, 1, 2186, 36876, 99288, 81200, 25312, 3136, 128, 1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256, 1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512
Offset: 0
Triangle begins:
{1},
{1, 2},
{1, 8, 4},
{1, 26, 36, 8},
{1, 80, 232, 128, 16},
{1, 242, 1320, 1360, 400, 32},
{1, 728, 7084, 12160, 6320, 1152, 64},
{1, 2186, 36876, 99288, 81200, 25312, 3136, 128},
{1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256},
{1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512},
...
Boas-Buck recurrence for column m = 2, and n = 4: T(4,2) = (1/2)*[4*3*T(3, 2) + 2*6*(-2)^2*Bernoulli(2)*T(2,2)] = (1/2)*(12*36 + 12*4*(1/6)*4) = 232. - _Wolfdieter Lang_, Aug 11 2017
- Khristo N. Boyadzhiev, New identities with Stirling, hyperharmonic, and derangement numbers, Bernoulli and Euler polynomials, powers, and factorials, arXiv:2011.03101v3 [math.NT], 2020-2021.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Eric Weisstein's World of Mathematics, Dobiński's formula
-
p[x_, n_] = Sum[(2*m + 1)^n*x^m/m!, {m, 0, Infinity}]/(Exp[x]);
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
A286718
Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)). A generalized Stirling1 triangle.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 28, 39, 12, 1, 280, 418, 159, 22, 1, 3640, 5714, 2485, 445, 35, 1, 58240, 95064, 45474, 9605, 1005, 51, 1, 1106560, 1864456, 959070, 227969, 28700, 1974, 70, 1, 24344320, 42124592, 22963996, 5974388, 859369, 72128, 3514, 92, 1, 608608000, 1077459120, 616224492, 172323696, 27458613, 2662569, 159978, 5814, 117, 1, 17041024000, 30777463360, 18331744896, 5441287980, 941164860, 102010545, 7141953, 322770, 9090, 145, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
O: 1
1: 1 1
2: 4 5 1
3: 28 39 12 1
4: 280 418 159 22 1
5: 3640 5714 2485 445 35 1
6: 58240 95064 45474 9605 1005 51 1
7: 1106560 1864456 959070 227969 28700 1974 70 1
8: 24344320 42124592 22963996 5974388 859369 72128 3514 92 1
...
From _Wolfdieter Lang_, Aug 09 2017: (Start)
Recurrence: T(3, 1) = T(2, 0) + (3*3-2)*T(2, 1) = 4 + 7*5 = 39.
Boas-Buck recurrence for column k = 2 and n = 5:
T(5, 2) = (5!/3)*(3^2*(1 + 6*(3/8))*T(2,2)/2! + 3*(1 + 6*(5/12)*T(3, 2)/3! + (1 + 6*(1/2))* T(4, 2)/4!)) = (5!/3)*(9*(1 + 9/4)/2 + 3*(1 + 15/6)*12/6 + (1 + 3)*159/24) = 2485.
The beta sequence begins: {1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, ...}.
(End)
- Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- P. Bala, A 3 parameter family of generalized Stirling numbers
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Peter Luschny, The Stirling-Frobenius numbers.
S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is
A048993,
A154537,
A282629,
A225466,
A285061 and
A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,2], [4,1] and [4,3] is
A132393,
A028338,
A225470,
A290317 and
A225471, respectively.
-
T[n_ /; n >= 1, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (3*n-2)* T[n-1, k]; T[, -1] = 0; T[0, 0] = 1; T[n, k_] /; nJean-François Alcover, Jun 20 2018 *)
Showing 1-10 of 21 results.
Comments