cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A282629 Sheffer triangle (exp(x), exp(3*x) - 1). Named S2[3,1].

Original entry on oeis.org

1, 1, 3, 1, 15, 9, 1, 63, 108, 27, 1, 255, 945, 594, 81, 1, 1023, 7380, 8775, 2835, 243, 1, 4095, 54729, 109890, 63180, 12393, 729, 1, 16383, 395388, 1263087, 1151010, 387828, 51030, 2187, 1, 65535, 2816865, 13817034, 18752391, 9658278, 2133054, 201204, 6561, 1, 262143, 19914660, 146620935, 285232185, 210789621, 69502860, 10825650, 767637, 19683
Offset: 0

Views

Author

Wolfdieter Lang, Apr 03 2017

Keywords

Comments

For Sheffer triangles (infinite lower triangular exponential convolution matrices) see the W. Lang link under A006232, with references).
The e.g.f. for the sequence of column m is (Sheffer property) exp(x)*(exp(3*x) - 1)^m/m!.
This is a generalization of the Sheffer triangle Stirling2(n, m) = A048993(n, m) denoted by (exp(x), exp(x)-1), which could be named S2[1,0].
The a-sequence for this Sheffer triangle has e.g.f. 3*x/log(1+x) and is 3*A006232(n)/ A006233(n) (Cauchy numbers of the first kind).
The z-sequence has e.g.f. (3/(log(1+x)))*(1 - 1/(1+x)^(1/3)) and is A284857(n) / A284858(n).
The main diagonal gives A000244.
The row sums give A284859. The alternating row sums give A284860.
The triangle appears in the o.g.f. G(n, x) of the sequence {(1 + 3*m)^n}{m>=0}, as G(n, x) = Sum{m=0..n} T(n, m)*m!*x^m/(1-x)^(m+1), n >= 0. Hence the corresponding e.g.f. is, by the linear inverse Laplace transform, E(n, t) = Sum_{m >=0}(1 + 3*m)^n t^m/m! = exp(t)*Sum_{m=0..n} T(n, m)*t^m.
The corresponding Euler triangle with reversed rows is rEu(n, k) = Sum_{m=0..k} (-1)^(k-m)*binomial(n-m, k-m)*T(n, k)*k!, 0 <= k <= n. This is A225117 with row reversion.
The first column k sequences divided by 3^k are A000012, A002450 (with a leading 0), A016223, A021874. For the e.g.f.s and o.g.f.s see below. - Wolfdieter Lang, Apr 09 2017
From Wolfdieter Lang, Aug 09 2017: (Start)
The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,m)*x^m of the Sheffer triangle S2[d,a] satisfy, as special polynomials of the Boas-Buck class, the identity (see the reference, and we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)
(E_x - n*1)*R(d,a;n,x) = - n*a*R(d,a;n-1,x) - Sum_{k=0..n-1} binomial(n, k+1)*(-d)^(k+1)*Bernoulli(k+1)*E_x*R(d,a;n-1-k,x), with E_x = x*d/dx (Euler operator).
This entails a recurrence for the sequence of column m, for n > m:
T(d,a;n,m) = (1/(n - m))*[(n/2)*(2*a + d*m)*T(d,a;n-1,m) + m*Sum_{p=m..n-2} binomial(n,p)(-d)^(n-p)*Bernoulli(n-p)*T(d,a;p,m)], with input T(d,a;n,n) = d^n. For the present [d,a] = [3,1] case see the formula and example sections below. - Wolfdieter Lang, Aug 09 2017 (End)
The inverse of this triangular Sheffer matrix S2[3,1] is S1[3,1] with rational elements S1[3,1](n, k) = (-1)^(n-k)*A286718(n, k)/3^k. - Wolfdieter Lang, Nov 15 2018
Named after the American mathematician Isador Mitchell Sheffer (1901-1992). - Amiram Eldar, Jun 19 2021

Examples

			The triangle T(n, m) begins:
  n\m 0      1        2         3         4         5        6        7      8     9
  0:  1
  1:  1      3
  2:  1     15        9
  3:  1     63      108        27
  4:  1    255      945       594        81
  5:  1   1023     7380      8775      2835       243
  6:  1   4095    54729    109890     63180     12393      729
  7:  1  16383   395388   1263087   1151010    387828    51030     2187
  8:  1  65535  2816865  13817034  18752391   9658278  2133054   201204   6561
  9:  1 262143 19914660 146620935 285232185 210789621 69502860 10825650 767637 19683
  ...
------------------------------------------------------------------------------------
Nontrivial recurrence for m=0 column from z-sequence: T(4,0) = 4*(1*1 + 63*(-1/6) + 108*(11/54) + 27*(-49/108)) = 1.
Recurrence for m=2 column from a-sequence: T(4, 2) = (4/2)*(1*63*3 + 2*108*(3/2) + 3*27*(-3/6)) = 945.
Recurrence for row polynomial R(3, x) (Meixner type): ((3*x + 1) + 3*x*d_x)*(1 + 15*x + 9*x^2) = 1 + 63*x + 108*x^2 + 27*x^3.
E.g.f. and o.g.f. of n = 1 powers {(1 + 3*m)^1}_{m>=0} A016777: E(1, x) = exp(x) * (T(1, 0) + T(1, 1)*x) = exp(x)*(1+3*x). O.g.f.: G(1, x) = T(1, 0)*0!/(1-x) + T(1, 1)*1!*x/(1-x)^2 = (1+2*x)/(1-x)^2.
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (1/2)*(2*(2 + 3*2)*T(3, 2) + 2*6*(-3)^2*bernoulli(2)*T(2, 2)) = (1/2)*(16*108 + 12*9*(1/6)*9) = 945. - _Wolfdieter Lang_, Aug 09 2017
		

References

  • Ralph P. Boas, Jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 08 2017 *)
  • PARI
    T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
    for(n=0, 9, for(m=0, n, print1(T(n, m),", ");); print();) \\ Indranil Ghosh, Apr 08 2017

Formula

A nontrivial recurrence for the column m=0 entries T(n, 0) = 1 from the z-sequence given above: T(n,0) = n*Sum_{j=0..n-1} z(j)*T(n-1,j), n >= 1, T(0, 0) = 1.
Recurrence for column m >= 1 entries from the a-sequence given above: T(n, m) = (n/m)*Sum_{j=0..n-m} binomial(m-1+j, m-1)*a(j)*T(n-1, m-1+j), m >= 1.
Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((3*x+1) + 3*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.
T(n, m) = Sum_{k=0..m} binomial(m,k)*(-1)^(k-m)*(1 + 3*k)^n/m!, 0 <= m <= n.
E.g.f. of triangle: exp(z)*exp(x*(exp(3*z)-1)) (Sheffer type).
E.g.f. for sequence of column m is exp(x)*((exp(3*x) - 1)^m)/m! (Sheffer property).
From Wolfdieter Lang, Apr 09 2017: (Start)
Standard three-term recurrence: T(n, m) = 0 if n < m, T(n,-1) = 0, T(0, 0) = 1, T(n, m) = 3*T(n-1, m-1) + (1+3*m)*T(n-1, m) for n >= 1. From the T(n, m) formula. Compare with the recurrence of S2[3,2] given in A225466.
The o.g.f. for sequence of column m is 3^m*x^m/Product_{j=0..m} (1 - (1+3*j)*x). (End)
In terms of Stirling2 = A048993: T(n, m) = Sum_{k=0..n} binomial(n, k)* 3^k*Stirling2(k, m), 0 <= m <= n. - Wolfdieter Lang, Apr 13 2017
Boas-Buck recurrence for column sequence m: T(n, m) = (1/(n - m))*((n/2)*(2 + 3*m)*T(n-1, m) + m*Sum_{p=m..n-2} binomial(n,p)*(-3)^(n-p)*Bernoulli(n-p)*T(p, m)), for n > m >= 0, with input T(m, m) = 3^m. See a comment above. - Wolfdieter Lang, Aug 09 2017

A111577 Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 07 2005

Keywords

Comments

In triangles of analogs to Stirling numbers of the second kind, the multipliers of T(n-1,k) in the recurrence are terms in arithmetic sequences: in Pascal's triangle A007318, the multiplier = 1. In triangle A008277, the Stirling numbers of the second kind, the multipliers are in the set (1,2,3...). For this sequence here, the multipliers are from A016777.
Riordan array [exp(x), (exp(3x)-1)/3]. - Paul Barry, Nov 26 2008
From Peter Bala, Jan 27 2015: (Start)
Working with an offset of 0, this is the triangle of connection constants between the polynomial basis sequences {x^n}, n>=0 and {n!*3^n*binomial((x - 1)/3,n)}, n>=0. An example is given below.
Call this array M and let P denote Pascal's triangle A007318, then P * M = A225468, P^2 * M = A075498. Also P^(-1) * M is a shifted version of A075498.
This triangle is the particular case a = 3, b = 0, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End)
Named after the English scientist Francis Galton (1822-1911). - Amiram Eldar, Jun 13 2021
This is the array of (r, β)-Stirling numbers for r = 1 and β = 3. See Corcino. - Peter Bala, Feb 26 2025

Examples

			T(5,3) = T(4,2) + 7*T(4,3) = 21 + 7*12 = 105.
The triangle starts in row n = 1 as:
  1;
  1,  1;
  1,  5,   1;
  1, 21,  12,  1;
  1, 85, 105, 22, 1;
Connection constants: Row 4: [1, 21, 12, 1] so
x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - _Peter Bala_, Jan 27 2015
From _Peter Bala_, Feb 26 2025: (Start)
The array factorizes as
/1                \     /1               \/1              \/1             \
|1   1            |     |1   1           ||0  1           ||0  1          |
|1   5    1       |  =  |1   4   1       ||0  1   1       ||0  0  1       | ...
|1  21   12   1   |     |1  13   7   1   ||0  1   4  1    ||0  0  1  1    |
|1  85  105  22  1|     |1  44  34  10  1||0  1  13  7  1 ||0  0  1  4  1 |
|...              |     |...             ||...            ||...           |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - x), x/(1 - 3*x)). Cf. A193843. (End)
		

Crossrefs

Programs

  • Maple
    A111577 := proc(n,k) option remember; if k = 1 or k = n then 1; else procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; fi; end:
    seq( seq(A111577(n,k),k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
  • Mathematica
    T[, 1] = 1; T[n, n_] = 1;
    T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)

Formula

T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k).
E.g.f.: exp(x)*exp((y/3)*(exp(3x)-1)). - Paul Barry, Nov 26 2008
Let f(x) = exp(1/3*exp(3*x) + x). Then, with an offset of 0, the row polynomials R(n,x) are given by R(n,exp(3*x)) = 1/f(x)*(d/dx)^n(f(x)). Similar formulas hold for A008277, A039755, A105794, A143494 and A154537. - Peter Bala, Mar 01 2012
T(n, k) = 1/(3^k*k!)*Sum_{j=0..k}((-1)^(k-j)*binomial(k,j)*(3*j+1)^n). - Peter Luschny, May 20 2013
From Peter Bala, Jan 27 2015: (Start)
T(n,k) = Sum_{i = 0..n-1} 3^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1).
O.g.f. for n-th diagonal: exp(-x/3)*Sum_{k >= 0} (3*k + 1)^(k+n-1)*((x/3*exp(-x))^k)/k!.
O.g.f. column k (with offset 0): 1/( (1 - x)*(1 - 4*x)*...*(1 - (3*k + 1)*x) ). (End)

Extensions

Edited and extended by R. J. Mathar, Aug 22 2009

A151919 a(n) = (-2)^n*A_{n,3}(1/2) where A_{n,k}(x) are the generalized Eulerian polynomials.

Original entry on oeis.org

1, -4, 34, -442, 7654, -165634, 4301254, -130313362, 4512058774, -175757170114, 7606919927974, -362157366660082, 18809374928573494, -1058311485335621794, 64126470727596628294, -4163172358878650459602, 288297029592971540217814, -21212159439736738874060674
Offset: 0

Views

Author

Roger L. Bagula, Jan 12 2009

Keywords

Comments

Old name was: row sums in A154594.

Crossrefs

Cf. A154594 (row sums), A284861 (row sums if unsigned).
Cf. A000670 (Fubini numbers).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(-x)/(2 - Exp(-3*x)) ))); // G. C. Greubel, May 27 2024
  • Mathematica
    m = 18; CoefficientList[Exp[-x]/(2 - Exp[-3x]) + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Jun 19 2019 *)
  • SageMath
    @CachedFunction
    def BB(n, k, x):  # modified cardinal B-splines
        if n == 1: return 0 if (x < 0) or (x >= k) else 1
        return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
    def EulerianPolynomial(n, k, x):
        if n == 0: return 1
        return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
    [(-2)^n*EulerianPolynomial(n, 3, 1/2) for n in (0..17)]
    # Peter Luschny, May 04 2013
    

Formula

E.g.f.: exp(-x)/(2 - exp(-3*x)). (see e.g.f. of row sums of A284861 with x -> -x). - Wolfdieter Lang, Jul 12 2017
a(n) = (-1)^n*Sum_{k=0..n} binomial(n,k)*3^k*A000670(k). - Emanuele Munarini, Dec 05 2020

Extensions

New name and more terms added by Peter Luschny, May 04 2013

A225117 Triangle read by rows, coefficients of the generalized Eulerian polynomials A_{n, 3}(x) in descending order.

Original entry on oeis.org

1, 2, 1, 4, 13, 1, 8, 93, 60, 1, 16, 545, 1131, 251, 1, 32, 2933, 14498, 10678, 1018, 1, 64, 15177, 154113, 262438, 88998, 4089, 1, 128, 77101, 1475736, 4890287, 3870352, 692499, 16376, 1, 256, 388321, 13270807, 77404933, 117758659, 50476003, 5175013, 65527, 1
Offset: 0

Views

Author

Peter Luschny, May 02 2013

Keywords

Comments

The row sums equal the triple factorial numbers A032031 and the alternating row sums, i.e., Sum_{k=0..n}(-1)^k*T(n,k), are up to a sign A000810. - Johannes W. Meijer, May 04 2013

Examples

			[0]  1
[1]  2*x   +   1
[2]  4*x^2 +  13*x   +    1
[3]  8*x^3 +  93*x^2 +   60*x   +   1
[4] 16*x^4 + 545*x^3 + 1131*x^2 + 251*x + 1
...
The triangle T(n, k) begins:
n \ k 0      1        2        3       4      5     6 7 ...
0:    1
1:    2      1
2:    4     13        1
3:    8     93       60        1
5:   16    545     1131      251       1
6:   32   2933    14498    10678    1018      1
7:   64  15177   154113   262438   88998   4089     1
8:  128  77101  1475736  4890287 3870352 692499 16376 1
...  - _Wolfdieter Lang_, Apr 08 2017
Three term recurrence: T(2,1) = (3*(2-1)+1)*2 + (3*1+2)*1 = 13. - _Wolfdieter Lang_, Apr 10 2017
		

Crossrefs

Coefficients of A_{n,1}(x) = A008292, coefficients of A_{n,2}(x) = A060187, coefficients of A_{n,4}(x) = A225118.

Programs

  • Maple
    gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
    series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
    collect(simplify(%), x) end:
    seq(print(seq(coeff(gf(n, 3), x, n-k), k=0..n)), n=0..6);
    # Recurrence
    P := proc(n,x) option remember; if n = 0 then 1 else
      (n*x+(1/3)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
      expand(%) fi end:
    A225117 := (n,k) -> 3^n*coeff(P(n,x),x,n-k):
    seq(print(seq(A225117(n,k), k=0..n)), n=0..5);  # Peter Luschny, Mar 08 2014
  • Mathematica
    gf[n_, k_] := Module[{f, s}, f[x_, t_] := x*Exp[t*x/k]/(1-x*Exp[t*x]); s = Series[f[x, t], {t, 0, n+2}]; ((1-x)/x)^(n+1)*k^n*n!*SeriesCoefficient[s, {t, 0, n}]]; Table[Table[SeriesCoefficient[gf[n, 3], {x, 0, n-k}], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Maple *)
  • PARI
    T(n, k) = sum(j=0, n - k, (-1)^(n - k - j)*binomial(n + 1, n - k - j)*(1 + 3*j)^n);
    for(n=0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import binomial
    def T(n,k): return sum((-1)**(n - k - j)* binomial(n + 1, n - k - j)*(1 + 3*j)**n for j in range(n - k + 1))
    for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 10 2017
  • Sage
    @CachedFunction
    def EB(n, k, x):  # Modified cardinal B-splines
        if n == 1: return 0 if (x < 0) or (x >= 1) else 1
        return k*x*EB(n-1, k, x) + k*(n-x)*EB(n-1, k, x-1)
    def EulerianPolynomial(n, k): # Generalized Eulerian polynomials
        R. = ZZ[]
        if x == 0: return 1
        return add(EB(n+1, k, m+1/k)*x^m for m in (0..n))
    [EulerianPolynomial(n, 3).coefficients()[::-1] for n in (0..5)]
    

Formula

Generating function of the polynomials is gf(n, k) = k^n*n!*(1/x-1)^(n+1)[t^n](x*e^(t*x/k)*(1-x*e(t*x))^(-1)) for k = 3; here [t^n]f(t,x) is the coefficient of t^n in f(t,x).
From Wolfdieter Lang, Apr 10 2017: (Start)
T(n, k) = Sum_{j=0..n-k} (-1)^(n-k-j)*binomial(n+1, n-k-j)*(1+3*j)^n, 0 <= k <= n.
T(n, k) = Sum_{m=0..n-k} (-1)^(n-k-m)*binomial(n-m, k)*A284861(n, m), 0 <= k <= n.
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k are R(n, x) = (x-1)^n*Sum_{m=0} A284861(n, m)*(1/(x-1))^m, n >= 0, i.e. the row polynomials of A284861 in the variable 1/(x-1) multiplied by (x-1)^n.
The row polynomials with falling powers are P(n, x) = (1-x)^n*Sum_{m=0..n} A284861(n, m)*(x/(1-x))^m, n >= 0.
The e.g.f. of the row polynomials in falling powers of x (A_{n, 3}(x) of the name) is exp((1-x)*z)/(1 - (x/(1 - x)) * (exp(3*(1-x)*z) - 1)) = (1-x)*exp((1-x)*z)/(1 - x*exp(3*(1-x)*z)).
The e.g.f. of the row polynomials R(n, x) (rising powers of x) is then (1-x)*exp(2*(1-x)*z)/(1 - x*exp(3*(1-x)*z)).
Three term recurrence: T(n, k) = 0 if n < k , T(n, -1) = 0, T(0,0) = 1, T(n, k) = (3*(n-k)+1)*T(n-1, k-1) + (3*k+2)*T(n-1, k) for n >= 1, k=0..n. (End)

A285068 Denominators of the generalized Bernoulli numbers B[3,1] = 3^n*B(n, 1/3).

Original entry on oeis.org

1, 2, 2, 1, 10, 1, 14, 1, 10, 1, 22, 1, 910, 1, 2, 1, 170, 1, 266, 1, 110, 1, 46, 1, 910, 1, 2, 1, 290, 1, 4774, 1, 170, 1, 2, 1, 639730, 1, 2, 1, 4510, 1, 602, 1, 230, 1, 94, 1, 15470, 1, 22
Offset: 0

Views

Author

Wolfdieter Lang, Apr 28 2017

Keywords

Comments

The numerators are given in A157799.
Because B(n, 2/3) = (-1)^n*B(n, 1/3) (from the e.g.f. z*exp(x*z)/(exp(z)-1) of Bernoulli polynomials {B(n, x)}_{n>=0}) one has for the numbers B[3,2](n) = 3^n*B(n, 2/3) the numerators (-1)^n*A157799(n) and the denominators a(n).
This sequence gives also the denominators of {3^n*B(n)}_{n>=0} with numerators given in A285863.

Examples

			The Bernoulli numbers r(n) = B[3,1](n) begin: 1, -1/2, -1/2, 1, 13/10, -5, -121/14, 49, 1093/10, -809, -49205/22, 20317, 61203943/910, -722813, -5580127/2, 34607305, ...
The Bernoulli numbers B[3,2](n) begin: 1, 1/2, -1/2, -1, 13/10, 5, -121/14, -49, 1093/10, 809, -49205/22, -20317, 61203943/910, 722813, -5580127/2, -34607305, ...
From _Peter Luschny_, Mar 26 2021: (Start)
The generalized Bernoulli numbers as given in the Luschny link are different.
1, -7/2, 23/2, -35, 973/10, -245, 7943/14, -1295, 31813/10, -7721, 288715/22, -13475, 128296423/910, -882557, -4891999/2, 33870025, ...
The numerators of these numbers are in A157811. (End)
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[3^n*BernoulliB[n, 1/3]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • PARI
    a(n) = denominator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
  • Python
    from sympy import bernoulli, Rational
    def a(n):
        return (3**n * bernoulli(n, Rational(1,3))).as_numer_denom()[1]
    print([a(n) for n in range(101)])  # Indranil Ghosh, Jul 18 2017
    
  • SageMath
    # uses [gen_bernoulli_number from A157811]
    print([denominator((-1)^n*gen_bernoulli_number(n, 3)) for n in range(23)])
    # Peter Luschny, Mar 26 2021
    

Formula

a(n) = denominator(r(n)) with the rationals (in lowest terms) r(n) = Sum_{k=0..n} ((-1)^k / (k+1))*A282629(n, k)*k! = Sum_{k=0..n} ((-1)^k/(k+1))*A284861(n, k). r(n) = B[3,1](n) = 3^n*B(n, 1/3) with the Bernoulli polynomials A196838/A196839 or A053382/A053383.
a(n) = A157800(n)/3^n, n >= 0.

A285066 Triangle read by rows: T(n, m) = A285061(n, m)*m!, 0 <= m <= n.

Original entry on oeis.org

1, 1, 4, 1, 24, 32, 1, 124, 480, 384, 1, 624, 5312, 10752, 6144, 1, 3124, 52800, 203520, 276480, 122880, 1, 15624, 500192, 3279360, 7956480, 8110080, 2949120, 1, 78124, 4626720, 48633984, 187729920, 329441280, 268369920, 82575360, 1, 390624, 42265472, 687762432, 3969552384, 10672865280, 14615838720, 9909043200, 2642411520, 1, 1953124, 383514240, 9448097280, 78486589440, 303521218560, 621544734720, 696605736960, 404288962560, 95126814720
Offset: 0

Views

Author

Wolfdieter Lang, Apr 19 2017

Keywords

Comments

This is the Sheffer triangle S2[4,1] = A285061 with column m scaled by m!. This is the fourth member of the triangle family A131689, A145901 and A284861.
This triangle appears in the o.g.f. G(n, x) = Sum_{m=0..n} T(n, m)*x^m/(1-x)^(m+1), n >= 0, of the power sequence {(1+4*m)^n}_{m >= 0}.
The diagonal sequence is A047053. The row sums give A285067. The alternating sum of row n is A141413(n+2), n >= 0.
The first column sequences are: A000012, 4*A003463, 2!*4^2*A016234.

Examples

			The triangle T(n, m) begins:
  n\m 0     1       2        3         4         5         6        7
  0:  1
  1:  1     4
  2:  1    24      32
  3:  1   124     480      384
  4:  1   624    5312    10752      6144
  5:  1  3124   52800   203520    276480    122880
  6:  1 15624  500192  3279360   7956480   8110080   2949120
  7:  1 78124 4626720 48633984 187729920 329441280 268369920 82575360
  ...
row 8: 1 390624 42265472 687762432 3969552384 10672865280 14615838720 9909043200 2642411520
row 9: 1 1953124 383514240 9448097280 78486589440 303521218560 621544734720 696605736960 404288962560 95126814720
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, m_]:=Sum[Binomial[m, k]*(-1)^(k - m)*(1 + 4k)^n, {k, 0, n}]; Table[T[n, m], {n, 0, 10},{m, 0, n}] // Flatten (* Indranil Ghosh, May 02 2017 *)
  • Python
    from sympy import binomial
    def T(n, m):
        return sum([binomial(m, k)*(-1)**(k - m)*(1 + 4*k)**n for k in range(n + 1)])
    for n in range(21):
        print([T(n, m) for m in range(n + 1)])
    # Indranil Ghosh, May 02 2017

Formula

T(n, m) = A285061(n, m)*m! = A111578(n, m)*(4^m*m!), 0 <= m <= n.
T(n, m) = Sum_{k=0..n} binomial(m,k)*(-1)^(k-m)*(1+4*k)^n.
T(n, m) = Sum_{j=0..n} binomial(n-j,m-j)*A225118(n,n-j).
Recurrence: T(n, -1) = 0, T(0, 0) = 1, T(n, m) = 0 if n < m and T(n, m) =
4*m*T(n-1, m-1) + (1+4*m)*T(n-1, m) for n >= 1, m=0..n.
E.g.f. row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: exp(z)/(1 - x*(exp(4*z) - 1)).
E.g.f. column m: exp(x)*(exp(4*x) - 1)^m, m >= 0.
O.g.f. column m: m!*(4*x)^m/Product_{j=0..m} (1 - (1 + 4*j)*x), m >= 0.

A337997 Triangle read by rows, generalized Eulerian polynomials evaluated at x = 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 24, 384, 1944, 6144, 0, 120, 3840, 29160, 122880, 375000, 0, 720, 46080, 524880, 2949120, 11250000, 33592320, 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
Offset: 0

Views

Author

Peter Luschny, Oct 07 2020

Keywords

Examples

			Polynomial triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1+x, x^2+6*x+1
[3] 0, x^2+4*x+1, x^3+23*x^2+23*x+1, 8*x^3+93*x^2+60*x+1
[4] 0, x^3+11*x^2+11*x+1, x^4+76*x^3+230*x^2+76*x+1, 16*x^4+545*x^3+1131*x^2+251*x+
1, 81*x^4+1996*x^3+3446*x^2+620*x+1
Integer triangle starts:
[0] 1
[1] 0,    1
[2] 0,    2,      8
[3] 0,    6,     48,      162
[4] 0,   24,    384,     1944,     6144
[5] 0,  120,   3840,    29160,   122880,    375000
[6] 0,  720,  46080,   524880,  2949120,  11250000,   33592320
[7] 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
		

Crossrefs

Programs

  • Maple
    # Two alternative implementations are given in the link.
    GeneralizedEulerianPolynomial := proc(n, k, x) local S;
       if n = 0 then  return 1 fi;
       S := m -> add((-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1),j=0..n+1);
       add(S(m)*x^m, m=0..n)/2 end:
    T := (n, k) -> subs(x=1, GeneralizedEulerianPolynomial(n, k, x)):
    for n from 0 to 6 do seq(T(n, k), k=0..n) od;

Formula

The polynomials are defined P(0,0,x)=1 and P(n,k,x) = (1/2)*Sum_{m=0..n} S(m)*x^m where S(m) = Sum_{j=0..n+1}(-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1).
T(n, k) = P(n, k, 1).
T(n, k) = n!*k^n. - Hugo Pfoertner, Oct 07 2020
Showing 1-7 of 7 results.