A282629
Sheffer triangle (exp(x), exp(3*x) - 1). Named S2[3,1].
Original entry on oeis.org
1, 1, 3, 1, 15, 9, 1, 63, 108, 27, 1, 255, 945, 594, 81, 1, 1023, 7380, 8775, 2835, 243, 1, 4095, 54729, 109890, 63180, 12393, 729, 1, 16383, 395388, 1263087, 1151010, 387828, 51030, 2187, 1, 65535, 2816865, 13817034, 18752391, 9658278, 2133054, 201204, 6561, 1, 262143, 19914660, 146620935, 285232185, 210789621, 69502860, 10825650, 767637, 19683
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 3
2: 1 15 9
3: 1 63 108 27
4: 1 255 945 594 81
5: 1 1023 7380 8775 2835 243
6: 1 4095 54729 109890 63180 12393 729
7: 1 16383 395388 1263087 1151010 387828 51030 2187
8: 1 65535 2816865 13817034 18752391 9658278 2133054 201204 6561
9: 1 262143 19914660 146620935 285232185 210789621 69502860 10825650 767637 19683
...
------------------------------------------------------------------------------------
Nontrivial recurrence for m=0 column from z-sequence: T(4,0) = 4*(1*1 + 63*(-1/6) + 108*(11/54) + 27*(-49/108)) = 1.
Recurrence for m=2 column from a-sequence: T(4, 2) = (4/2)*(1*63*3 + 2*108*(3/2) + 3*27*(-3/6)) = 945.
Recurrence for row polynomial R(3, x) (Meixner type): ((3*x + 1) + 3*x*d_x)*(1 + 15*x + 9*x^2) = 1 + 63*x + 108*x^2 + 27*x^3.
E.g.f. and o.g.f. of n = 1 powers {(1 + 3*m)^1}_{m>=0} A016777: E(1, x) = exp(x) * (T(1, 0) + T(1, 1)*x) = exp(x)*(1+3*x). O.g.f.: G(1, x) = T(1, 0)*0!/(1-x) + T(1, 1)*1!*x/(1-x)^2 = (1+2*x)/(1-x)^2.
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (1/2)*(2*(2 + 3*2)*T(3, 2) + 2*6*(-3)^2*bernoulli(2)*T(2, 2)) = (1/2)*(16*108 + 12*9*(1/6)*9) = 945. - _Wolfdieter Lang_, Aug 09 2017
- Ralph P. Boas, Jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- Michael De Vlieger, Table of n, a(n) for n = 0..11475, rows n = 0..150, flattened.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Cf.
A000012,
A000244,
A006232/
A006233,
A016777,
A024036,
A111577,
A225117,
A225466,
A284857,
A284858,
A284859,
A284860,
A284861,
A286718.
-
Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 08 2017 *)
-
T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
for(n=0, 9, for(m=0, n, print1(T(n, m),", ");); print();) \\ Indranil Ghosh, Apr 08 2017
A111577
Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
Offset: 1
T(5,3) = T(4,2) + 7*T(4,3) = 21 + 7*12 = 105.
The triangle starts in row n = 1 as:
1;
1, 1;
1, 5, 1;
1, 21, 12, 1;
1, 85, 105, 22, 1;
Connection constants: Row 4: [1, 21, 12, 1] so
x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - _Peter Bala_, Jan 27 2015
From _Peter Bala_, Feb 26 2025: (Start)
The array factorizes as
/1 \ /1 \/1 \/1 \
|1 1 | |1 1 ||0 1 ||0 1 |
|1 5 1 | = |1 4 1 ||0 1 1 ||0 0 1 | ...
|1 21 12 1 | |1 13 7 1 ||0 1 4 1 ||0 0 1 1 |
|1 85 105 22 1| |1 44 34 10 1||0 1 13 7 1 ||0 0 1 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - x), x/(1 - 3*x)). Cf. A193843. (End)
- Peter Bala, A 3 parameter family of generalized Stirling numbers, 2015.
- Peter Bala, Factorising (r,b)-Stirling arrays
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Ruedi Suter, Two Analogues of a Classical Sequence, Journal of Integer Sequences, Vol. 3 (2000), Article 00.1.8. [_Paul Barry_, Nov 26 2008]
-
A111577 := proc(n,k) option remember; if k = 1 or k = n then 1; else procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; fi; end:
seq( seq(A111577(n,k),k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
-
T[, 1] = 1; T[n, n_] = 1;
T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)
A151919
a(n) = (-2)^n*A_{n,3}(1/2) where A_{n,k}(x) are the generalized Eulerian polynomials.
Original entry on oeis.org
1, -4, 34, -442, 7654, -165634, 4301254, -130313362, 4512058774, -175757170114, 7606919927974, -362157366660082, 18809374928573494, -1058311485335621794, 64126470727596628294, -4163172358878650459602, 288297029592971540217814, -21212159439736738874060674
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(-x)/(2 - Exp(-3*x)) ))); // G. C. Greubel, May 27 2024
-
m = 18; CoefficientList[Exp[-x]/(2 - Exp[-3x]) + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Jun 19 2019 *)
-
@CachedFunction
def BB(n, k, x): # modified cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= k) else 1
return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
def EulerianPolynomial(n, k, x):
if n == 0: return 1
return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
[(-2)^n*EulerianPolynomial(n, 3, 1/2) for n in (0..17)]
# Peter Luschny, May 04 2013
A225117
Triangle read by rows, coefficients of the generalized Eulerian polynomials A_{n, 3}(x) in descending order.
Original entry on oeis.org
1, 2, 1, 4, 13, 1, 8, 93, 60, 1, 16, 545, 1131, 251, 1, 32, 2933, 14498, 10678, 1018, 1, 64, 15177, 154113, 262438, 88998, 4089, 1, 128, 77101, 1475736, 4890287, 3870352, 692499, 16376, 1, 256, 388321, 13270807, 77404933, 117758659, 50476003, 5175013, 65527, 1
Offset: 0
[0] 1
[1] 2*x + 1
[2] 4*x^2 + 13*x + 1
[3] 8*x^3 + 93*x^2 + 60*x + 1
[4] 16*x^4 + 545*x^3 + 1131*x^2 + 251*x + 1
...
The triangle T(n, k) begins:
n \ k 0 1 2 3 4 5 6 7 ...
0: 1
1: 2 1
2: 4 13 1
3: 8 93 60 1
5: 16 545 1131 251 1
6: 32 2933 14498 10678 1018 1
7: 64 15177 154113 262438 88998 4089 1
8: 128 77101 1475736 4890287 3870352 692499 16376 1
... - _Wolfdieter Lang_, Apr 08 2017
Three term recurrence: T(2,1) = (3*(2-1)+1)*2 + (3*1+2)*1 = 13. - _Wolfdieter Lang_, Apr 10 2017
Coefficients of A_{n,1}(x) =
A008292, coefficients of A_{n,2}(x) =
A060187, coefficients of A_{n,4}(x) =
A225118.
-
gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%), x) end:
seq(print(seq(coeff(gf(n, 3), x, n-k), k=0..n)), n=0..6);
# Recurrence
P := proc(n,x) option remember; if n = 0 then 1 else
(n*x+(1/3)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
expand(%) fi end:
A225117 := (n,k) -> 3^n*coeff(P(n,x),x,n-k):
seq(print(seq(A225117(n,k), k=0..n)), n=0..5); # Peter Luschny, Mar 08 2014
-
gf[n_, k_] := Module[{f, s}, f[x_, t_] := x*Exp[t*x/k]/(1-x*Exp[t*x]); s = Series[f[x, t], {t, 0, n+2}]; ((1-x)/x)^(n+1)*k^n*n!*SeriesCoefficient[s, {t, 0, n}]]; Table[Table[SeriesCoefficient[gf[n, 3], {x, 0, n-k}], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Maple *)
-
T(n, k) = sum(j=0, n - k, (-1)^(n - k - j)*binomial(n + 1, n - k - j)*(1 + 3*j)^n);
for(n=0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 10 2017
-
from sympy import binomial
def T(n,k): return sum((-1)**(n - k - j)* binomial(n + 1, n - k - j)*(1 + 3*j)**n for j in range(n - k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 10 2017
-
@CachedFunction
def EB(n, k, x): # Modified cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= 1) else 1
return k*x*EB(n-1, k, x) + k*(n-x)*EB(n-1, k, x-1)
def EulerianPolynomial(n, k): # Generalized Eulerian polynomials
R. = ZZ[]
if x == 0: return 1
return add(EB(n+1, k, m+1/k)*x^m for m in (0..n))
[EulerianPolynomial(n, 3).coefficients()[::-1] for n in (0..5)]
A285068
Denominators of the generalized Bernoulli numbers B[3,1] = 3^n*B(n, 1/3).
Original entry on oeis.org
1, 2, 2, 1, 10, 1, 14, 1, 10, 1, 22, 1, 910, 1, 2, 1, 170, 1, 266, 1, 110, 1, 46, 1, 910, 1, 2, 1, 290, 1, 4774, 1, 170, 1, 2, 1, 639730, 1, 2, 1, 4510, 1, 602, 1, 230, 1, 94, 1, 15470, 1, 22
Offset: 0
The Bernoulli numbers r(n) = B[3,1](n) begin: 1, -1/2, -1/2, 1, 13/10, -5, -121/14, 49, 1093/10, -809, -49205/22, 20317, 61203943/910, -722813, -5580127/2, 34607305, ...
The Bernoulli numbers B[3,2](n) begin: 1, 1/2, -1/2, -1, 13/10, 5, -121/14, -49, 1093/10, 809, -49205/22, -20317, 61203943/910, 722813, -5580127/2, -34607305, ...
From _Peter Luschny_, Mar 26 2021: (Start)
The generalized Bernoulli numbers as given in the Luschny link are different.
1, -7/2, 23/2, -35, 973/10, -245, 7943/14, -1295, 31813/10, -7721, 288715/22, -13475, 128296423/910, -882557, -4891999/2, 33870025, ...
The numerators of these numbers are in A157811. (End)
-
Table[Denominator[3^n*BernoulliB[n, 1/3]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
-
a(n) = denominator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
-
from sympy import bernoulli, Rational
def a(n):
return (3**n * bernoulli(n, Rational(1,3))).as_numer_denom()[1]
print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 18 2017
-
# uses [gen_bernoulli_number from A157811]
print([denominator((-1)^n*gen_bernoulli_number(n, 3)) for n in range(23)])
# Peter Luschny, Mar 26 2021
A285066
Triangle read by rows: T(n, m) = A285061(n, m)*m!, 0 <= m <= n.
Original entry on oeis.org
1, 1, 4, 1, 24, 32, 1, 124, 480, 384, 1, 624, 5312, 10752, 6144, 1, 3124, 52800, 203520, 276480, 122880, 1, 15624, 500192, 3279360, 7956480, 8110080, 2949120, 1, 78124, 4626720, 48633984, 187729920, 329441280, 268369920, 82575360, 1, 390624, 42265472, 687762432, 3969552384, 10672865280, 14615838720, 9909043200, 2642411520, 1, 1953124, 383514240, 9448097280, 78486589440, 303521218560, 621544734720, 696605736960, 404288962560, 95126814720
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7
0: 1
1: 1 4
2: 1 24 32
3: 1 124 480 384
4: 1 624 5312 10752 6144
5: 1 3124 52800 203520 276480 122880
6: 1 15624 500192 3279360 7956480 8110080 2949120
7: 1 78124 4626720 48633984 187729920 329441280 268369920 82575360
...
row 8: 1 390624 42265472 687762432 3969552384 10672865280 14615838720 9909043200 2642411520
row 9: 1 1953124 383514240 9448097280 78486589440 303521218560 621544734720 696605736960 404288962560 95126814720
...
Cf.
A000012, 4*
A003463, 32*
A016234,
A111578 (T(n, m)/4^m),
A131689,
A141413,
A145901,
A225118,
A225472,
A225473,
A284861,
A285061.
-
T[n_, m_]:=Sum[Binomial[m, k]*(-1)^(k - m)*(1 + 4k)^n, {k, 0, n}]; Table[T[n, m], {n, 0, 10},{m, 0, n}] // Flatten (* Indranil Ghosh, May 02 2017 *)
-
from sympy import binomial
def T(n, m):
return sum([binomial(m, k)*(-1)**(k - m)*(1 + 4*k)**n for k in range(n + 1)])
for n in range(21):
print([T(n, m) for m in range(n + 1)])
# Indranil Ghosh, May 02 2017
A337997
Triangle read by rows, generalized Eulerian polynomials evaluated at x = 1.
Original entry on oeis.org
1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 24, 384, 1944, 6144, 0, 120, 3840, 29160, 122880, 375000, 0, 720, 46080, 524880, 2949120, 11250000, 33592320, 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
Offset: 0
Polynomial triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1+x, x^2+6*x+1
[3] 0, x^2+4*x+1, x^3+23*x^2+23*x+1, 8*x^3+93*x^2+60*x+1
[4] 0, x^3+11*x^2+11*x+1, x^4+76*x^3+230*x^2+76*x+1, 16*x^4+545*x^3+1131*x^2+251*x+
1, 81*x^4+1996*x^3+3446*x^2+620*x+1
Integer triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 8
[3] 0, 6, 48, 162
[4] 0, 24, 384, 1944, 6144
[5] 0, 120, 3840, 29160, 122880, 375000
[6] 0, 720, 46080, 524880, 2949120, 11250000, 33592320
[7] 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
-
# Two alternative implementations are given in the link.
GeneralizedEulerianPolynomial := proc(n, k, x) local S;
if n = 0 then return 1 fi;
S := m -> add((-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1),j=0..n+1);
add(S(m)*x^m, m=0..n)/2 end:
T := (n, k) -> subs(x=1, GeneralizedEulerianPolynomial(n, k, x)):
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
Showing 1-7 of 7 results.
Comments