cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A154921 Triangle read by rows, T(n, k) = binomial(n, k) * Sum_{j=0..n-k} E(n-k, j)*2^j, where E(n, k) are the Eulerian numbers A173018(n, k), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 75, 52, 18, 4, 1, 541, 375, 130, 30, 5, 1, 4683, 3246, 1125, 260, 45, 6, 1, 47293, 32781, 11361, 2625, 455, 63, 7, 1, 545835, 378344, 131124, 30296, 5250, 728, 84, 8, 1, 7087261, 4912515, 1702548, 393372, 68166, 9450, 1092, 108, 9, 1
Offset: 0

Views

Author

Mats Granvik, Jan 17 2009

Keywords

Comments

Previous name: Matrix inverse of A154926.
A000670 appears in the first column. A052882 appears in the second column. A000027 and A045943 appear as diagonals. An alternative to calculating the matrix inverse of A154926 is to move the term in the lower right corner to a position in the same column and calculate the determinant instead, which yields the same answer.
Matrix inverse of (2*I - P), where P is Pascal's triangle and I the identity matrix. See A162312 for the matrix inverse of (2*P - I) and some general remarks about arrays of the form M(a) := (I - a*P)^-1 and their connection with weighted sums of powers of integers. The present array equals (1/2)*M(1/2). - Peter Bala, Jul 01 2009
From Mats Granvik, Aug 11 2009: (Start)
The values in this triangle can be seen as permanents of the Pascal triangle analogous to the method in the Redheffer matrix. The elements satisfy (T(n,k)/T(n,k-1))*k = (T(n-1,k)/T(n,k))*n which converges to log(2) as n->oo and k->0. More generally to calculate log(x) multiply the negative values in A154926 by 1/(x-1) and calculate the matrix inverse. Then (T(n,k)/T(n,k-1))*k and (T(n-1,k)/T(n,k))*n in the resulting triangle converge to log(x).
This method for calculating log(x) converges faster than the Taylor series when x is greater than 5 or so. See chapter on Taylor series in Spiegel for comparison. (End)
Exponential Riordan array [1/(2-exp(x)),x]. - Paul Barry, Apr 06 2011
T(n,k) is the number of ordered set partitions of {1,2,...,n} such that the first block contains k elements. For k=0 the first block contains arbitrarily many elements. - Geoffrey Critzer, Jul 22 2013
A natural (signed) refinement of these polynomials is given by the Appell sequence e.g.f. e^(xt)/ f(t) = exp[tP.(x)] with the formal Taylor series f(x) = 1 + x[1] x + x[2] x^2/2! + ... and with raising operator R = x - d[log(f(D)]/dD (cf. A263634). - Tom Copeland, Nov 06 2015

Examples

			From _Peter Bala_, Jul 01 2009: (Start)
Triangle T(n, k) begins:
n\k|     0     1     2     3     4     5     6
==============================================
0  |     1
1  |     1     1
2  |     3     2     1
3  |    13     9     3     1
4  |    75    52    18     4     1
5  |   541   375   130    30     5     1
6  |  4683  3246  1125   260    45     6     1
...
(End)
From _Mats Granvik_, Aug 11 2009: (Start)
Row 4 equals 75,52,18,4,1 because permanents of:
  1,0,0,0,1  1,0,0,0,0  1,0,0,0,0  1,0,0,0,0  1,0,0,0,0
  1,1,0,0,0  1,1,0,0,1  1,1,0,0,0  1,1,0,0,0  1,1,0,0,0
  1,2,1,0,0  1,2,1,0,0  1,2,1,0,1  1,2,1,0,0  1,2,1,0,0
  1,3,3,1,0  1,3,3,1,0  1,3,3,1,0  1,3,3,1,1  1,3,3,1,0
  1,4,6,4,0  1,4,6,4,0  1,4,6,4,0  1,4,6,4,0  1,4,6,4,1
are:
     75         52         18          4          1
(End)
		

References

  • Murray R. Spiegel, Mathematical handbook, Schaum's Outlines, p. 111.

Crossrefs

Cf. A000629 (row sums), A000670, A007047, A052822 (column 1), A052841 (alt. row sums), A080253, A162312, A162313.
Cf. A263634, A099880 (T(2n,n)).

Programs

  • Maple
    A154921_row := proc(n) local i,p; p := proc(n,x) option remember; local k;
    if n = 0 then 1 else add(p(k,0)*binomial(n,k)*(1+x^(n-k)),k=0..n-1) fi end:
    seq(coeff(p(n,x),x,i),i=0..n) end: for n from 0 to 5 do A154921_row(n) od;
    # Peter Luschny, Jul 15 2012
    T := (n,k) -> binomial(n,k)*add(combinat:-eulerian1(n-k,j)*2^j, j=0..n-k):
    seq(print(seq(T(n,k), k=0..n)),n=0..6); # Peter Luschny, Feb 07 2015
    # third Maple program:
    b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=1..n)) end:
    T:= (n, k)-> n!/k! *b(n-k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 03 2019
    # fourth Maple program:
    p := proc(n, m) option remember; if n = 0 then 1 else
        (m + x)*p(n - 1, m) + (m + 1)*p(n - 1, m + 1) fi end:
    row := n -> local k; seq(coeff(p(n, 0), x, k), k = 0..n):
    for n from 0 to 6 do row(n) od;  # Peter Luschny, Jun 23 2023
  • Mathematica
    nn = 8; a = Exp[x] - 1;
    Map[Select[#, # > 0 &] &,
      Transpose[
       Table[Range[0, nn]! CoefficientList[
    Series[x^n/n!/(1 - a), {x, 0, nn}], x], {n, 0, nn}]]] // Grid (* Geoffrey Critzer, Jul 22 2013 *)
    E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k < 0 || k > n = 0; E1[n_, k_] := E1[n, k] = (n - k) E1[n - 1, k - 1] + (k + 1) E1[n - 1, k];
    T[n_, k_] := Binomial[n, k] Sum[E1[n - k, j] 2^j, {j, 0, n - k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 30 2018, after Peter Luschny *)
  • Sage
    @CachedFunction
    def Poly(n, x):
        return 1 if n == 0 else add(Poly(k,0)*binomial(n,k)*(x^(n-k)+1) for k in range(n))
    R = PolynomialRing(ZZ, 'x')
    for n in (0..6): print(R(Poly(n,x)).list()) # Peter Luschny, Jul 15 2012

Formula

From Peter Bala, Jul 01 2009: (Start)
TABLE ENTRIES
(1) T(n,k) = binomial(n,k)*A000670(n-k).
GENERATING FUNCTION
(2) exp(x*t)/(2-exp(t)) = 1 + (1+x)*t + (3+2*x+x^2)*t^2/2! + ....
PROPERTIES OF THE ROW POLYNOMIALS
The row generating polynomials R_n(x) form an Appell sequence. They appear in the study of the poset of power sets [Nelsen and Schmidt].
The first few values are R_0(x) = 1, R_1(x) = 1+x, R_2(x) = 3+2*x+x^2 and R_3(x) = 13+9*x+3*x^2+x^3.
The row polynomials may be recursively computed by means of
(3) R_n(x) = x^n + Sum_{k = 0..n-1} binomial(n,k)*R_k(x).
Explicit formulas include
(4) R_n(x) = (1/2)*Sum_{k >= 0} (1/2)^k*(x+k)^n,
(5) R_n(x) = Sum_{j = 0..n} Sum_{k = 0..j} (-1)^(j-k)*binomial(j,k) *(x+k)^n,
and
(6) R_n(x) = Sum_{j = 0..n} Sum_{k = j..n} k!*Stirling2(n,k) *binomial(x,k-j).
SUMS OF POWERS OF INTEGERS
The row polynomials satisfy the difference equation
(7) 2*R_m(x) - R_m(x+1) = x^m,
which easily leads to the evaluation of the weighted sums of powers of integers
(8) Sum_{k = 1..n-1} (1/2)^k*k^m = 2*R_m(0) - (1/2)^(n-1)*R_m(n).
For example, m = 2 gives
(9) Sum_{k = 1..n-1} (1/2)^k*k^2 = 6 - (1/2)^(n-1)*(n^2+2*n+3).
More generally we have
(10) Sum_{k=0..n-1} (1/2)^k*(x+k)^m = 2*R_m(x) - (1/2)^(n-1)*R_m(x+n).
RELATIONS WITH OTHER SEQUENCES
Sequences in the database given by particular values of the row polynomials are
(11) A000670(n) = R_n(0)
(12) A052841(n) = R_n(-1)
(13) A000629(n) = R_n(1)
(14) A007047(n) = R_n(2)
(15) A080253(n) = 2^n*R_n(1/2).
This last result is the particular case (x = 0) of the result that the polynomials 2^n*R_n(1/2+x/2) are the row generating polynomials for A162313.
The above formulas should be compared with those for A162312. (End)
From Peter Luschny, Jul 15 2012: (Start)
(16) A151919(n) = R_n(1/3)*3^n*(-1)^n
(17) A052882(n) = [x^1] R_n(x)
(18) A045943(n) = [x^(n-1)] R_n+1(x)
(19) A099880(n) = [x^n] R_2n(x). (End)
The coefficients in ascending order of x^i of the polynomials p{0}(x) = 1 and p{n}(x) = Sum_{k=0..n-1} binomial(n,k)*p{k}(0)*(1+x^(n-k)). - Peter Luschny, Jul 15 2012

Extensions

New name by Peter Luschny, Feb 07 2015

A284861 Triangle read by rows: T(n, k) = S2[3,1](n, k)*k! with the Sheffer triangle S2[3,1] = (exp(x), exp(3*x) -1) given in A282629.

Original entry on oeis.org

1, 1, 3, 1, 15, 18, 1, 63, 216, 162, 1, 255, 1890, 3564, 1944, 1, 1023, 14760, 52650, 68040, 29160, 1, 4095, 109458, 659340, 1516320, 1487160, 524880, 1, 16383, 790776, 7578522, 27624240, 46539360, 36741600, 11022480, 1, 65535, 5633730, 82902204, 450057384, 1158993360, 1535798880, 1014068160, 264539520
Offset: 0

Views

Author

Wolfdieter Lang, Apr 09 2017

Keywords

Comments

This is a generalization of triangle A131689(n, k) = Stirling2(n, k)*k!, because S2[3,1] is a generalization of the Stirling2 triangle written as S2[1,0].
This triangle appears in the o.g.f. G(3,1;n,x) of the powers {(1+3*m)^n}{m>=0} as G(3,1;n,x) = Sum{k>=0..n} T(n, k)*x^k / (1-x)^k.
This triangle is also related to the generalized row reversed Euler triangle rEu[3,1] with row polynomial rEu(3,1;n,x) = Sum_{m=0..n} rEu(3,1;n,m)*x^m with rEu(3,1;n,m) = Sum_{j=0..m} (-1)^(m-j)*binomial(n-j, m-j)*T(n, m). This follows from the above given o.g.f. of powers G(3,1;n,x) = rEu(3,1;n,x)/(1-x)^(n+1). The Euler triangle E[3,1] (row reversed rEu[3,1] is given in A225117. See a formula below.
The e.g.f. of the row polynomials R(3,1;n,x) = Sum_{m=0..n} T(n, m)*x^m follows from the e.g.f. of the row polynomials of the Sheffer triangle A282629. See the formula section.
The diagonal sequence is A032031(k) = k!*3^k.
The row sums give unsigned A151919, and the alternating row sums give A122803.
The first column k sequences divided by A032031(k) are A000012, A002450 (with a leading 0), A016223, A021874. For the e.g.f.s and o.g.f.s see below.

Examples

			The triangle T(n, k) begins
n\k 0     1      2       3        4        5        6        7 ...
0:  1
1:  1     3
2:  1    15     18
3:  1    63    216     162
4:  1   255   1890    3564     1944
5:  1  1023  14760   52650    68040    29160
6:  1  4095 109458  659340  1516320  1487160   524880
7:  1 16383 790776 7578522 27624240 46539360 36741600 11022480
...
row n=8: 1 65535 5633730 82902204 450057384 1158993360 1535798880 1014068160 264539520,
row n=9: 1 262143 39829320 879725610 6845572440 25294754520 50042059200 54561276000 30951123840 7142567040,
row n=10: 1 1048575 280378098 9155719980 99549149040 507399658920 1406104706160 2251231315200 2083248720000 1035672220800 214277011200.
------------------------------------------------------------------
T(2, 1) =  -1 + 4^2 = 15 = 2*A225117(2,2) + 1*A225117(2,1) = 2*1 + 1*13.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k, m] (-1)^(k - m) (1 + 3m)^n, {m, 0, k}], {n, 0, 10}, {k, 0, n}]// Flatten (* Indranil Ghosh, Apr 09 2017 *)
  • PARI
    for(n=0, 10, for(k=0, n, print1(sum(m=0, k, binomial(k, m) * (-1)^(k - m)*(1 + 3*m)^n),", "); ); print();) \\ Indranil Ghosh, Apr 09 2017
    
  • Python
    # Indranil Ghosh, Apr 09 2017
    from sympy import binomial
    for n in range(11):
        print([sum([binomial(k, m)*(-1)**(k - m)*(1 + 3*m)**n for m in range(k + 1)]) for k in range(n + 1)])

Formula

E.g.f. of the row polynomials R(n, x) (see a comment above) is exp(z)/(1 - x*(exp(3*z) - 1)). This is the e.g.f. for the triangle.
T(n, k) = Sum_{m=0..k} binomial(k, m)*(-1)^(k-m)*(1+ 3*m)^n, 0 <= k <= n.
T(n, k) = Sum_{m=0..k} binomial(n-m, k-m)*A225117(n,n-m), 0 <= k <= n.
Three term recurrence: T(n, k) = 0 if n < k, T(n,-1) = 0, T(0, 0) = 1, T(n, k) = 3*k*T(n-1, k-1) + (1+3*k)*T(n-1, k) for n >= 1. See A282629.
The column k sequence has e.g.f. exp(x)*(exp(3*x) - 1)^k (from the Sheffer property of A282629).
The o.g.f. is A032031(k)*x^k/Product_{j=0..k} (1 - (1+3*j)*x).
From Peter Bala, Jan 12 2018: (Start)
n-th row polynomial R(n,x) = (1 + 3*x) o (1 + 3*x) o ... o (1 + 3*x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E14 in the Bala link. Cf. A145901.
R(n,x) = Sum_{k = 0..n} binomial(n,k)*3^k*F(k,x) where F(k,x) is the Fubini polynomial of order k, the k-th row polynomial of A019538. (End)

A367979 Expansion of e.g.f. exp(-x) / (2 - exp(3*x)).

Original entry on oeis.org

1, 2, 22, 278, 4822, 104342, 2709622, 82092278, 2842418902, 110720079062, 4792059271222, 228144844817078, 11849163703935382, 666694458859845782, 40397145162583154422, 2622634244645856386678, 181615748103175019442262, 13362823095925278064444502, 1041037845089466806646007222
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2023

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( Exp(-x)/(2-Exp(3*x)) ))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    nmax = 18; CoefficientList[Series[Exp[-x]/(2 - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (-1)^n + Sum[Binomial[n, k] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • SageMath
    def A367979_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x)/(2-exp(3*x)) ).egf_to_ogf().list()
    A367979_list(40) # G. C. Greubel, Jun 11 2024

Formula

a(n) = Sum_{k>=0} (3*k-1)^n / 2^(k+1).
a(n) = (-1)^n + Sum_{k=1..n} binomial(n,k) * 3^k * a(n-k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 3^k * A000670(k).

A368453 Expansion of e.g.f. 3*exp(x) / (4 - exp(3*x)).

Original entry on oeis.org

1, 2, 8, 52, 452, 4892, 63508, 962012, 16654772, 324375292, 7019618708, 167098274972, 4339293330292, 122075401356092, 3698469101172308, 120054668185331932, 4156854586083305012, 152925374174876071292, 5956866331612558316308, 244927333201908131524892
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=1, i, 3^(j-1)*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = 1 + Sum_{k=1..n} 3^(k-1) * binomial(n,k) * a(n-k).

A355218 a(n) = Sum_{k>=1} (3*k - 1)^n / 2^k.

Original entry on oeis.org

1, 5, 43, 557, 9643, 208685, 5419243, 164184557, 5684837803, 221440158125, 9584118542443, 456289689634157, 23698327407870763, 1333388917719691565, 80794290325166308843, 5245268489291712773357, 363231496206350038884523, 26725646191850556128889005, 2082075690178933613292014443
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[Exp[2 x]/(2 - Exp[3 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = 2^n + Sum[Binomial[n, k] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]

Formula

E.g.f.: exp(2*x) / (2 - exp(3*x)).
a(0) = 1; a(n) = 2^n + Sum_{k=1..n} binomial(n,k) * 3^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * 3^k * A000670(k).
a(n) ~ n! * 3^n / (2^(1/3) * log(2)^(n+1)). - Vaclav Kotesovec, Jun 24 2022

A154594 Triangle read by rows: T(n, k) = [x^k] p(x, n), where p(x, n) = (-1)^n*(1 - 2*x)^(n + 1)* Sum_{j >= 0} (3*j + 2)^n*(2*x)^j.

Original entry on oeis.org

1, -2, -2, 4, 26, 4, -8, -186, -240, -8, 16, 1090, 4524, 2008, 16, -32, -5866, -57992, -85424, -16288, -32, 64, 30354, 616452, 2099504, 1423968, 130848, 64, -128, -154202, -5902944, -39122296, -61925632, -22159968, -1048064, -128, 256, 776642, 53083228, 619239464, 1884138544, 1615232096, 331200832, 8387456, 256
Offset: 0

Views

Author

Roger L. Bagula, Jan 12 2009

Keywords

Examples

			Triangle begins as:
     1;
    -2,      -2;
     4,      26,        4;
    -8,    -186,     -240,        -8;
    16,    1090,     4524,      2008,        16;
   -32,   -5866,   -57992,    -85424,    -16288,       -32;
    64,   30354,   616452,   2099504,   1423968,    130848,       64;
  -128, -154202, -5902944, -39122296, -61925632, -22159968, -1048064, -128;
		

Crossrefs

Cf. A151919 (row sums), A154593.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    p:= func< n,x | (-1)^n*(1-2*x)^(n+1)*(&+[(3*j+2)^n*(2*x)^j: j in [0..n]]) >;
    T:= func< n,k | Coefficient(R!( p(n,x) ), k) >;
    [T(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, May 26 2024
    
  • Mathematica
    m=12; p[x_, n_]= (-1)^n*(1-2*x)^(n+1)*Sum[(3*j+2)^n*(2*x)^j, {j,0,m+2}];
    T[n_, k_]:= Coefficient[Series[p[x, n], {x,0,n}], x, k];
    Table[T[n,k], {n,0,m}, {k,0,n}]//Flatten
  • SageMath
    m=12
    def p(x,n): return (-1)^n*(1-2*x)^(n+1)*sum((3*j+2)^n*(2*x)^j for j in range(n+1))
    def T(n,k): return ( p(x,n) ).series(x, n+1).list()[k]
    flatten([[T(n,k) for k in range(n+1)] for n in range(m+1)]) # G. C. Greubel, May 26 2024

Formula

T(n, k) = [x^k]( p(x, n) ), where p(x, n) = (-1)^n*(1-2*x)^(n+1)*Sum_{j >= 0} (3*j+2)^n*(2*x)^j, or p(x, n) = (-2)^n * (1-2*x)^(n+1) * LerchPhi(2*x, -n, 2/3).
Sum_{k=0..n} T(n, k) = A151919(n) (row sums).

Extensions

Edited by G. C. Greubel, May 26 2024

A368440 Expansion of e.g.f. exp(x) / (3 - 2*exp(3*x)).

Original entry on oeis.org

1, 7, 103, 2287, 67687, 2504047, 111163303, 5757411247, 340788559207, 22693176094447, 1679047763217703, 136654363293340207, 12133120656211741927, 1167034341869994747247, 120886955198779063694503, 13416476227330202250197167, 1588276885073067052758303847
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+2*sum(j=1, i, 3^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = 1 + 2 * Sum_{k=1..n} 3^k * binomial(n,k) * a(n-k).

A368441 Expansion of e.g.f. exp(x) / (4 - 3*exp(3*x)).

Original entry on oeis.org

1, 10, 208, 6508, 271468, 14154580, 885638908, 64649204308, 5393387534428, 506188870889140, 52786278954586108, 6055112126576175508, 757725480419984012188, 102722055234542078115700, 14996854976334688765608508, 2345848207305916218955201108
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+3*sum(j=1, i, 3^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = 1 + 3 * Sum_{k=1..n} 3^k * binomial(n,k) * a(n-k).
Showing 1-8 of 8 results.