cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A285863 Numerators of Bernoulli numbers 3^n*B(n), with B(n) = A027641(n)/A027642(n).

Original entry on oeis.org

1, -3, 3, 0, -27, 0, 243, 0, -2187, 0, 98415, 0, -122408577, 0, 11160261, 0, -51899996619, 0, 5664991530321, 0, -202943637014337, 0, 8938507796555139, 0, -22252066887294301257, 0, 7246946747292751629, 0, -181103830292539169071623
Offset: 0

Views

Author

Wolfdieter Lang, Apr 29 2017

Keywords

Comments

The denominators are given in A285068.
In general the numbers B(d;n) = d^n*B(n), for n >= 0, have e.g.f. d*x/(exp(d*x) - 1). They are also the exponential convolution of the generalized Bernoulli numbers B[d,a](n), obtained from the generalized Stirling2 numbers S2[d,a], with the sequence {(-a)^n}_{n>=0}. See a comment in A157817 for the B[4,1] and B[4,3] examples.
These numbers B(d;n) and their polynomials B(d;n,x) = Sum_{m=0..n} binomial(n, m)*B(d;n-m)*x^m are used in the generalized so-called Faulhaber formula for the sums of powers of arithmetic progressions defined by SP(d,a;n,m) := Sum_{j=0..m} (a + d*j)^n = Sum_{k=0..n} binomial(n, k)*a^(n-k)*d^k*SP(k,m) with SP(k,m) = SP(1,0;k,m), n >= 0, m >= 0, and 0^0 := 1.
The Faulhaber formula is: SP(d,a;n,m) = (1/(d*(n+1)))*[B(d;n+1,x = a+d*(m+1)) - B(d;n+1,x = d) - B(d;n+1,x = a) + B(d;n+1,x=0) + d^(n+1)*[n=0]]. Here [n=0] is the Kronecker delta_{n,0} symbol: 1 if n=0 and 0 otherwise.
A simpler version of the Faulhaber formula is for a=0: SP(d,0;0,m) = m+1 and SP(d,0;n,m) = d^n*(1/(n+1))*(B(n+1, x = m+1) - B(n+1, x=1)) for n >= 1, and for a an integer >= 1: Sum_{k=0..n} binomial(n, k)*a^(n-k) * d^k * (1/(k+1)) * (B(k+1, x=m+1) - B(k+1, x=1)). Here B(n, x) = B(1;n,x) are the usual Bernoulli polynomials from A196838/A196839 or A053382/A053383.

Crossrefs

Programs

  • Maple
    seq(numer(3^n*bernoulli(n)), n=0..28); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[Numerator[3^n*BernoulliB[n]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • PARI
    a(n) = numerator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
  • Python
    from sympy import bernoulli
    def a(n): return -3 if n == 1 else (3**n * bernoulli(n)).numerator
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
    

Formula

a(n) = numerator(r(n)) with r(n) = 3^n*A027641(n)/A027642(n), n >= 0.
E.g.f. {r(n)}_{n>=0}: 3*x/(exp(3*x) - 1).

A157799 Numerator of Bernoulli(n, 1/3).

Original entry on oeis.org

1, -1, -1, 1, 13, -5, -121, 49, 1093, -809, -49205, 20317, 61203943, -722813, -5580127, 34607305, 25949996501, -2145998417, -2832495743227, 167317266613, 101471818419863, -16020403322021, -4469253897850313, 1848020950359841, 11126033443528968583, -252778977216700025
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Comments

This sequence gives also the numerators of the generalized Bernoulli numbers B[3,1](n) = 3^n*Bernoulli(n, 1/3) with denominators given by A285068. See the formula and example section there for the rationals. The numbers B[3,2](n) = 3^n*Bernoulli(n, 2/3) = (-1)^n*B[3,1](n) have numerators (-1)^n*a(n) and denominators A285068 (proof from the e.g.f.s). - Wolfdieter Lang, Apr 28 2017

Crossrefs

For denominators see A157800, A285068.

Programs

  • Mathematica
    Table[Numerator[BernoulliB[n, 1/3]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)
  • PARI
    a(n) = my(x=1/3); numerator(eval(bernpol(n))); \\ Ruud H.G. van Tol, May 10 2024
  • Python
    from sympy import bernoulli, Integer
    def a(n): return bernoulli(n, 1/Integer(3)).numerator # Indranil Ghosh, May 01 2017
    

A157811 Numerator of Bernoulli(n, -2/3).

Original entry on oeis.org

1, -7, 23, -35, 973, -245, 7943, -1295, 31813, -7721, 288715, -13475, 128296423, -882557, -4891999, 33870025, 26217383381, -2149340753, -2830613025019, 167302324405, 101475278720663, -16020469382309, -4469247530896841, 1848020660952865, 11126033993150564743
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Examples

			From _Peter Luschny_, Mar 26 2021: (Start)
The rational numbers given in the definition start:
1, -7/6, 23/18, -35/27, 973/810, -245/243, 7943/10206, -1295/2187, 31813/65610, -7721/19683, 288715/1299078, -13475/177147, 128296423/483611310, ...
The generalized Bernoulli numbers defined in the Luschny link are different:
1, -7/2, 23/2, -35, 973/10, -245, 7943/14, -1295, 31813/10, -7721, 288715/22, -13475, 128296423/910, -882557, -4891999/2, ... The denominators of these numbers are in A285068. (End)
		

Crossrefs

For denominators see A157800.
The denominators of the generalized Bernoulli numbers are A285068.

Programs

  • Mathematica
    Table[Numerator[BernoulliB[n, -2/3]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)
  • SageMath
    # Generalized Bernoulli polynomials
    def gen_bernoulli_polynomial(n, m, x):
        p = sum(sum(sum(((-1)^(n-v)/(j+1))*binomial(n,k)*binomial(j,v)*(m*(v-x))^k
            for v in (0..j)) for j in (0..k)) for k in (0..n))
        return expand(p)
    # Generalized Bernoulli numbers
    def gen_bernoulli_number(n, m): return gen_bernoulli_polynomial(n, m, 1)
    print([numerator((-1)^n*gen_bernoulli_number(n, 3)) for n in range(23)]) # Peter Luschny, Mar 26 2021

A288872 Denominators for generalized Bernoulli numbers B[5,j](n), for j=1..4, n >= 0.

Original entry on oeis.org

1, 2, 6, 1, 6, 1, 42, 1, 6, 1, 66, 1, 546, 1, 6, 1, 102, 1, 798, 1, 66, 1, 138, 1, 546, 1, 6, 1, 174, 1, 14322, 1, 102, 1, 6, 1, 383838, 1, 6, 1, 2706, 1, 1806, 1, 138, 1, 282, 1, 9282, 1, 66, 1, 318, 1, 798, 1, 174, 1, 354, 1, 11357346, 1, 6, 1, 102, 1, 64722, 1, 6, 1, 4686
Offset: 0

Views

Author

Wolfdieter Lang, Jul 05 2017

Keywords

Comments

See, e.g., A157871 for details on B[d,a](n) with gcd(d,a) = 1.

Crossrefs

Cf. A027642 (denominators B[1,0]), A141459 (denominators B[2,1]), A285068 (denominators B[3,1] and B[3,2]), A141459 (denominators B[4,1] and B[4,3]).
For the numerators of B[5,j](n), for j=1..4, see A157866(n), A157883(n), (-1)^n*A157883(n), (-1)^n*A157866(n), respectively.
Cf. A157871.

Programs

  • Mathematica
    Table[Denominator[BernoulliB[n, 1/5]]/5^n, {n, 0, 70}] (* Jean-François Alcover, Sep 24 2018, from PARI *)
  • PARI
    a(n)=denominator(subst(bernpol(n, x), x, 1/5))/5^n; \\ Michel Marcus, Jul 06 2017
    
  • Python
    from sympy import bernoulli
    def a(n): return bernoulli(n, 1/Integer(5)).denominator//(5**n)
    print([a(n) for n in range(41)]) # Indranil Ghosh, Jul 06 2017

A285866 a(n) = numerator((-2)^n*Sum_{k=0..n} binomial(n,k) * Bernoulli(k, 1/2)).

Original entry on oeis.org

1, -2, 11, -6, 127, -10, 221, -14, 367, -18, -1895, -22, 1447237, -26, -57253, -30, 118526399, -34, -5749677193, -38, 91546283957, -42, -1792042789427, -46, 1982765468376757, -50, -286994504449237, -54, 3187598676787485443, -58, -4625594554880206360895, -62
Offset: 0

Views

Author

Wolfdieter Lang, May 03 2017

Keywords

Comments

Previous name: Numerators of alternating row sums of the rational triangle B2 = A285864/A285865.
The denominators are given in A141459.

Crossrefs

Programs

  • Maple
    a := n -> numer((-2)^n*add(binomial(n,k)*bernoulli(k,1/2), k=0..n)):
    seq(a(n), n=0..31); # Peter Luschny, Jul 24 2020
  • Mathematica
    a[n_] := (-2)^n Sum[Binomial[n, k] BernoulliB[k, 1/2], {k, 0, n}] // Numerator;
    Table[a[n], {n, 0, 31}] (* Peter Luschny, Jul 24 2020 *)
  • SageMath
    # uses [gen_bernoulli_number from A157811]
    print([numerator((-1)^n*gen_bernoulli_number(n, 2)) for n in range(33)]) # Peter Luschny, Mar 26 2021

Formula

a(n) = numerator(Sum_{m=0..n} (-1)^m*A285864(n, m)/A285865(n, m)), n >= 0, where the rational triangle is B2(n, m) = binomial(m, m)*2^(n-m)*B(n-m), with the Bernoulli numbers B(k) = A027641(k)/A027642(k).

Extensions

More terms from Indranil Ghosh, May 06 2017
New name by Peter Luschny, Jul 24 2020

A288873 Numerators of scaled Bernoulli numbers 4^n*B(n), with B(n) = A027641(n)/A027642(n).

Original entry on oeis.org

1, -2, 8, 0, -128, 0, 2048, 0, -32768, 0, 2621440, 0, -5796528128, 0, 939524096, 0, -7767448354816, 0, 1507258642989056, 0, -95993412418797568, 0, 7516375836686024704, 0, -33265288504730187726848, 0, 19259875741830735724544, 0, -855664510723636131971203072, 0, 4966694343692730467779807805440
Offset: 0

Views

Author

Wolfdieter Lang, Jul 05 2017

Keywords

Comments

The denominators seem to be given in A141459.
See A285863 for comments on B(d;n) = d^n*B(n), for n >= 0, with e.g.f. d*x/(exp(d*x) - 1).

Examples

			The rationals r(n) begin: 1, -2, 8/3, 0, -128/15, 0, 2048/21, 0, -32768/15, 0, 2621440/33, 0, -5796528128/1365, 0, 939524096/3, 0, -7767448354816/255, 0, 1507258642989056/399, 0, -95993412418797568/165, ...
		

Crossrefs

Cf. A141459, A027641/A027642, (-1)^n*A239275(n)/A141459(n) (B(2;n)), A285863/A285068 (B(3;n)).

Programs

  • Maple
    seq(numer(4^n*bernoulli(n)),n=0..28); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[4^n BernoulliB[n] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *)
  • PARI
    a(n) = numerator(4^n*bernfrac(n)); \\ Michel Marcus, Jul 06 2017
    
  • Python
    from sympy import bernoulli
    def a(n): return -2 if n == 1 else (4**n * bernoulli(n)).numerator
    [a(n) for n in range(31)]  # Indranil Ghosh, Jul 06 2017

Formula

a(n) = numerator(r(n)), with the rationals r(n) = 4^n*A027641(n)/A027642(n), n >= 0.
E.g.f. of {r(n)}_{n>=0}: 4*x/(exp(4*x) - 1).
Showing 1-6 of 6 results.