A282629
Sheffer triangle (exp(x), exp(3*x) - 1). Named S2[3,1].
Original entry on oeis.org
1, 1, 3, 1, 15, 9, 1, 63, 108, 27, 1, 255, 945, 594, 81, 1, 1023, 7380, 8775, 2835, 243, 1, 4095, 54729, 109890, 63180, 12393, 729, 1, 16383, 395388, 1263087, 1151010, 387828, 51030, 2187, 1, 65535, 2816865, 13817034, 18752391, 9658278, 2133054, 201204, 6561, 1, 262143, 19914660, 146620935, 285232185, 210789621, 69502860, 10825650, 767637, 19683
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 3
2: 1 15 9
3: 1 63 108 27
4: 1 255 945 594 81
5: 1 1023 7380 8775 2835 243
6: 1 4095 54729 109890 63180 12393 729
7: 1 16383 395388 1263087 1151010 387828 51030 2187
8: 1 65535 2816865 13817034 18752391 9658278 2133054 201204 6561
9: 1 262143 19914660 146620935 285232185 210789621 69502860 10825650 767637 19683
...
------------------------------------------------------------------------------------
Nontrivial recurrence for m=0 column from z-sequence: T(4,0) = 4*(1*1 + 63*(-1/6) + 108*(11/54) + 27*(-49/108)) = 1.
Recurrence for m=2 column from a-sequence: T(4, 2) = (4/2)*(1*63*3 + 2*108*(3/2) + 3*27*(-3/6)) = 945.
Recurrence for row polynomial R(3, x) (Meixner type): ((3*x + 1) + 3*x*d_x)*(1 + 15*x + 9*x^2) = 1 + 63*x + 108*x^2 + 27*x^3.
E.g.f. and o.g.f. of n = 1 powers {(1 + 3*m)^1}_{m>=0} A016777: E(1, x) = exp(x) * (T(1, 0) + T(1, 1)*x) = exp(x)*(1+3*x). O.g.f.: G(1, x) = T(1, 0)*0!/(1-x) + T(1, 1)*1!*x/(1-x)^2 = (1+2*x)/(1-x)^2.
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (1/2)*(2*(2 + 3*2)*T(3, 2) + 2*6*(-3)^2*bernoulli(2)*T(2, 2)) = (1/2)*(16*108 + 12*9*(1/6)*9) = 945. - _Wolfdieter Lang_, Aug 09 2017
- Ralph P. Boas, Jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- Michael De Vlieger, Table of n, a(n) for n = 0..11475, rows n = 0..150, flattened.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Cf.
A000012,
A000244,
A006232/
A006233,
A016777,
A024036,
A111577,
A225117,
A225466,
A284857,
A284858,
A284859,
A284860,
A284861,
A286718.
-
Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 08 2017 *)
-
T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
for(n=0, 9, for(m=0, n, print1(T(n, m),", ");); print();) \\ Indranil Ghosh, Apr 08 2017
A111577
Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
Offset: 1
T(5,3) = T(4,2) + 7*T(4,3) = 21 + 7*12 = 105.
The triangle starts in row n = 1 as:
1;
1, 1;
1, 5, 1;
1, 21, 12, 1;
1, 85, 105, 22, 1;
Connection constants: Row 4: [1, 21, 12, 1] so
x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - _Peter Bala_, Jan 27 2015
From _Peter Bala_, Feb 26 2025: (Start)
The array factorizes as
/1 \ /1 \/1 \/1 \
|1 1 | |1 1 ||0 1 ||0 1 |
|1 5 1 | = |1 4 1 ||0 1 1 ||0 0 1 | ...
|1 21 12 1 | |1 13 7 1 ||0 1 4 1 ||0 0 1 1 |
|1 85 105 22 1| |1 44 34 10 1||0 1 13 7 1 ||0 0 1 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - x), x/(1 - 3*x)). Cf. A193843. (End)
- Peter Bala, A 3 parameter family of generalized Stirling numbers, 2015.
- Peter Bala, Factorising (r,b)-Stirling arrays
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Ruedi Suter, Two Analogues of a Classical Sequence, Journal of Integer Sequences, Vol. 3 (2000), Article 00.1.8. [_Paul Barry_, Nov 26 2008]
-
A111577 := proc(n,k) option remember; if k = 1 or k = n then 1; else procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; fi; end:
seq( seq(A111577(n,k),k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
-
T[, 1] = 1; T[n, n_] = 1;
T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)
A016781
a(n) = (3*n+1)^5.
Original entry on oeis.org
1, 1024, 16807, 100000, 371293, 1048576, 2476099, 5153632, 9765625, 17210368, 28629151, 45435424, 69343957, 102400000, 147008443, 205962976, 282475249, 380204032, 503284375, 656356768, 844596301, 1073741824, 1350125107, 1680700000, 2073071593, 2535525376
Offset: 0
-
[(3*n+1)^5: n in [0..30]]; // Vincenzo Librandi, Sep 21 2011
-
(3Range[0,20]+1)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,1024,16807,100000,371293,1048576},30] (* Harvey P. Dale, May 13 2012 *)
-
A016781(n):=(3*n+1)^5$
makelist(A016781(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
A225466
Triangle read by rows, 3^k*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 21, 9, 8, 117, 135, 27, 16, 609, 1431, 702, 81, 32, 3093, 13275, 12015, 3240, 243, 64, 15561, 115479, 171990, 81405, 13851, 729, 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187, 256, 390369, 7998111, 27533142, 29893941, 13121514, 2561706
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7]
[0] 1,
[1] 2, 3,
[2] 4, 21, 9,
[3] 8, 117, 135, 27,
[4] 16, 609, 1431, 702, 81,
[5] 32, 3093, 13275, 12015, 3240, 243,
[6] 64, 15561, 115479, 171990, 81405, 13851, 729,
[7] 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 3*T(3, 1) + (3*2+2)*T(3, 2) = 3*117 + 8*135 = 1431.
Boas-Buck recurrence for column k = 2, and n = 4: T(4,2) = (1/2)*(2*(4 + 3*2)*T(3, 2) + 2*6*(-3)^2*Bernoulli(2)*T(2, 2)) = (1/2)*(20*135 + 12*9*(1/6)*9) = 1431. (End)
- Vincenzo Librandi, Rows n = 0..50, flattened
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Peter Luschny, Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv:1308.0169 [math.CO], 2013, p. 12.
Cf.
A000079,
A000244,
A005057,
A016127,
A016297,
A025999,
A006232/
A006233,
A225117,
A225472,
A225468,
A282629,
A284862/
A284863,
A284864,
A284865.
-
SF_SS := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
seq(print(seq(SF_SS(n, k, 3), k=0..n)), n=0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
T(n, k) = sum(j=0, k, binomial(k, j)*(-1)^(j - k)*(2 + 3*j)^n/k!);
for(n=0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 10 2017
-
from sympy import binomial, factorial
def T(n, k): return sum(binomial(k, j)*(-1)**(j - k)*(2 + 3*j)**n//factorial(k) for j in range(k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 10 2017
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)
def SF_SS(n, k, m):
return add(EulerianNumber(n,j,m)*binomial(j,n-k) for j in (0..n))/ factorial(k)
def A225466(n): return SF_SS(n, k, 3)
A225468
Triangle read by rows, S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 1, 4, 7, 1, 8, 39, 15, 1, 16, 203, 159, 26, 1, 32, 1031, 1475, 445, 40, 1, 64, 5187, 12831, 6370, 1005, 57, 1, 128, 25999, 107835, 82901, 20440, 1974, 77, 1, 256, 130123, 888679, 1019746, 369061, 53998, 3514, 100, 1
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 4, 7, 1,
[3] 8, 39, 15, 1,
[4] 16, 203, 159, 26, 1,
[5] 32, 1031, 1475, 445, 40, 1,
[6] 64, 5187, 12831, 6370, 1005, 57, 1.
Connection constants: Row 3: [8, 39, 15, 1] so
x^3 = 8 + 39*(x - 2) + 15*(x - 2)*(x - 5) + (x - 2)*(x - 5)*(x - 8). - _Peter Bala_, Jan 27 2015
- Vincenzo Librandi, Rows n = 0..50, flattened
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
-
SF_S := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
seq(print(seq(SF_S(n, k, 3), k=0..n)), n = 0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)
def SF_S(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/ (factorial(k)*m^k)
for n in (0..6): [SF_S(n, k, 3) for k in (0..n)]
A225118
Triangle read by rows, coefficients of the generalized Eulerian polynomials A_{n, 4}(x) in descending order.
Original entry on oeis.org
1, 3, 1, 9, 22, 1, 27, 235, 121, 1, 81, 1996, 3446, 620, 1, 243, 15349, 63854, 40314, 3119, 1, 729, 112546, 963327, 1434812, 422087, 15618, 1, 2187, 806047, 12960063, 37898739, 26672209, 4157997, 78117, 1, 6561, 5705752, 162711868, 840642408, 1151050534
Offset: 0
[0] 1
[1] 3*x + 1
[2] 9*x^2 + 22*x + 1
[3] 27*x^3 + 235*x^2 + 121*x + 1
[4] 81*x^4 + 1996*x^3 + 3446*x^2 + 620*x + 1
...
The triangle T(n, k) begins:
n\k
0: 1
1: 3 1
2: 9 22 1
3: 27 235 121 1
4: 81 1996 3446 620 1
5: 243 15349 63854 40314 3119 1
6: 729 112546 963327 1434812 422087 15618 1
7: 2187 806047 12960063 37898739 26672209 4157997 78117 1
...
row n=8: 6561 5705752 162711868 840642408 1151050534 442372648 39531132 390616 1,
row n=9: 19683 40156777 1955297356 16677432820 39523450714 29742429982 6818184988 367889284 1953115 1.
... - _Wolfdieter Lang_, Apr 12 2017
-
gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%), x) end:
seq(print(seq(coeff(gf(n, 4), x, n-k), k=0..n)), n=0..6);
# Recurrence:
P := proc(n,x) option remember; if n = 0 then 1 else
(n*x+(1/4)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
expand(%) fi end:
A225117 := (n,k) -> 4^n*coeff(P(n,x),x,n-k):
seq(print(seq(A225117(n,k), k=0..n)), n=0..5); # Peter Luschny, Mar 08 2014
-
gf[n_, k_] := Module[{f, s}, f[x_, t_] := x*Exp[t*x/k]/(1-x*Exp[t*x]); s = Series[f[x, t], {t, 0, n+2}]; ((1-x)/x)^(n+1)*k^n*n!*SeriesCoefficient[s, {t, 0, n}]]; Table[Table[SeriesCoefficient[gf[n, 4], {x, 0, n-k}], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Maple *)
-
@CachedFunction
def EB(n, k, x): # Modified cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= 1) else 1
return k*x*EB(n-1, k, x) + k*(n-x)*EB(n-1, k, x-1)
def EulerianPolynomial(n, k): # Generalized Eulerian polynomials
R. = ZZ[]
if x == 0: return 1
return add(EB(n+1, k, m+1/k)*x^m for m in (0..n))
[EulerianPolynomial(n, 4).coefficients()[::-1] for n in (0..5)]
A284861
Triangle read by rows: T(n, k) = S2[3,1](n, k)*k! with the Sheffer triangle S2[3,1] = (exp(x), exp(3*x) -1) given in A282629.
Original entry on oeis.org
1, 1, 3, 1, 15, 18, 1, 63, 216, 162, 1, 255, 1890, 3564, 1944, 1, 1023, 14760, 52650, 68040, 29160, 1, 4095, 109458, 659340, 1516320, 1487160, 524880, 1, 16383, 790776, 7578522, 27624240, 46539360, 36741600, 11022480, 1, 65535, 5633730, 82902204, 450057384, 1158993360, 1535798880, 1014068160, 264539520
Offset: 0
The triangle T(n, k) begins
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 3
2: 1 15 18
3: 1 63 216 162
4: 1 255 1890 3564 1944
5: 1 1023 14760 52650 68040 29160
6: 1 4095 109458 659340 1516320 1487160 524880
7: 1 16383 790776 7578522 27624240 46539360 36741600 11022480
...
row n=8: 1 65535 5633730 82902204 450057384 1158993360 1535798880 1014068160 264539520,
row n=9: 1 262143 39829320 879725610 6845572440 25294754520 50042059200 54561276000 30951123840 7142567040,
row n=10: 1 1048575 280378098 9155719980 99549149040 507399658920 1406104706160 2251231315200 2083248720000 1035672220800 214277011200.
------------------------------------------------------------------
T(2, 1) = -1 + 4^2 = 15 = 2*A225117(2,2) + 1*A225117(2,1) = 2*1 + 1*13.
- P. Bala, Deformations of the Hadamard product of power series
- M. Dukes, C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Cf.
A000012,
A002450,
A016223,
A021874,
A032031,
A111577,
A122803,
A131689, |
A151919|,
A225117,
A282629,
A019538,
A145901.
-
Table[Sum[Binomial[k, m] (-1)^(k - m) (1 + 3m)^n, {m, 0, k}], {n, 0, 10}, {k, 0, n}]// Flatten (* Indranil Ghosh, Apr 09 2017 *)
-
for(n=0, 10, for(k=0, n, print1(sum(m=0, k, binomial(k, m) * (-1)^(k - m)*(1 + 3*m)^n),", "); ); print();) \\ Indranil Ghosh, Apr 09 2017
-
# Indranil Ghosh, Apr 09 2017
from sympy import binomial
for n in range(11):
print([sum([binomial(k, m)*(-1)**(k - m)*(1 + 3*m)**n for m in range(k + 1)]) for k in range(n + 1)])
A337997
Triangle read by rows, generalized Eulerian polynomials evaluated at x = 1.
Original entry on oeis.org
1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 24, 384, 1944, 6144, 0, 120, 3840, 29160, 122880, 375000, 0, 720, 46080, 524880, 2949120, 11250000, 33592320, 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
Offset: 0
Polynomial triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1+x, x^2+6*x+1
[3] 0, x^2+4*x+1, x^3+23*x^2+23*x+1, 8*x^3+93*x^2+60*x+1
[4] 0, x^3+11*x^2+11*x+1, x^4+76*x^3+230*x^2+76*x+1, 16*x^4+545*x^3+1131*x^2+251*x+
1, 81*x^4+1996*x^3+3446*x^2+620*x+1
Integer triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 8
[3] 0, 6, 48, 162
[4] 0, 24, 384, 1944, 6144
[5] 0, 120, 3840, 29160, 122880, 375000
[6] 0, 720, 46080, 524880, 2949120, 11250000, 33592320
[7] 0, 5040, 645120, 11022480, 82575360, 393750000, 1410877440, 4150656720
-
# Two alternative implementations are given in the link.
GeneralizedEulerianPolynomial := proc(n, k, x) local S;
if n = 0 then return 1 fi;
S := m -> add((-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1),j=0..n+1);
add(S(m)*x^m, m=0..n)/2 end:
T := (n, k) -> subs(x=1, GeneralizedEulerianPolynomial(n, k, x)):
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
Showing 1-8 of 8 results.
Comments