A282634 Recursive 2-parameter sequence allowing the Ramanujan's sum calculation.
1, 1, -1, 2, -1, -1, 2, 0, -2, 0, 4, -1, -1, -1, -1, 2, 1, -1, -2, -1, 1, 6, -1, -1, -1, -1, -1, -1, 4, 0, 0, 0, -4, 0, 0, 0, 6, 0, 0, -3, 0, 0, -3, 0, 0, 4, 1, -1, 1, -1, -4, -1, 1, -1, 1, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, 0, 2, 0, -2, 0, -4, 0
Offset: 1
Examples
The few first rows follow: c_n(t) t 0 1 2 3 4 5 6 | t 1 2 3 4 5 6 7 n |n 1 1; |1 1; 2 1, -1; |2 -1, 1; 3 2, -1, -1; |3 -1, -1, 2; 4 2, 0, -2, 0; |4 0, -2, 0, 2; 5 4, -1, -1, -1, -1; |5 -1, -1, -1, -1, 4; 6 2, 1, -1, -2, -1, 1; |6 1, -1, -2, -1, 1, 2; 7 6, -1, -1, -1, -1, -1, -1; |7 -1, -1, -1, -1, -1, -1, 6; ... | ... [Edited by _Seiichi Manyama_, Mar 05 2018]
Links
- Seiichi Manyama, Rows n=1..140 of triangle, flattened
- Gevorg Hmayakyan, On The Moebius and Euler Totient Functions Calculation.
- Charles A. Nicol, On Restricted Partitions and a Generalization Of The Euler Totient and The Moebius Function, PNAS 39(9) (1953), 963-968.
Programs
-
Mathematica
b[n_, m_] := b[n, m] = If[n > 1, b[n - 1, m] - b[n - 1, m - n + 1], 0] b[1, m_] := b[1, m] = If[m == 0, 1, 0] nt[n_, t_] := Round[(n - 1)/2 - t/n] a[n_, t_] := Sum[b[n, k*n + t], {k, 0, nt[n, t]}] Flatten[Table[Table[a[n, m], {m, 0, n - 1}], {n, 1, 20}]]
Formula
a(n,t) = Sum(b(n, k*n + t), k=0..N(n, t)), where b(n,k) = A231599(n-1,k) and N(n,t) = [(n - 1)/2 - t/n].
a(n,t) = c_n(t) for t >= 1, where c_n(t) is a Ramanujan's sum A054533.
a(n,t) = a(n,-t)
From Seiichi Manyama, Mar 05 2018: (Start)
a(n,t) = c_n(n-t) = Sum_{d | gcd(n,n-t)} d*mu(n/d) for 0 <= t <= n-1.
So a(n,t) = Sum_{d | gcd(n,t)} d*mu(n/d) for 1 <= t <= n-1. (End)
Comments