cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282698 Irregular triangle read by rows: row n gives numbers of maximal chains of lengths n-1, n, n+1, ... in the Tamari lattice T_n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 2, 2, 1, 10, 22, 22, 18, 13, 12, 1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286, 1, 35, 392, 1744, 4474, 8435, 12732, 17337, 21158, 27853, 33940, 41230, 45048, 50752, 41826, 33592, 1, 56, 1092, 9220, 40414, 123704, 276324, 550932, 917884
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2017

Keywords

Comments

Nelson (2017) gives first nine columns of the transposed triangle.

Examples

			Triangle begins:
  1;
  1;
  1,  1;
  1,  4,   2,   2;
  1, 10,  22,  22,  18,  13,  12;
  1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286;
  ...
The transposed triangle, as given by Nelson, begins:
  1, 1, 1, 1,  1,   1,     1,        1,          1, ...
        1, 4, 10,  20,    35,       56,         84, ...
           2, 22, 112,   392,     1092,       2604, ...
           2, 22, 232,  1744,     9220,      37444, ...
              18, 382,  4474,    40414,     280214, ...
              13, 348,  8435,   123704,    1321879, ...
              12, 456, 12732,   276324,    4578596, ...
                  390, 17337,   550932,   12512827, ...
                  420, 21158,   917884,   29499764, ...
                  334, 27853,  1510834,   62132126, ...
                  286, 33940,  2166460,  120837274, ...
                       41230,  3370312,  221484557, ...
                       45048,  4810150,  393364848, ...
                       50752,  7264302,  666955139, ...
                       41826, 10435954, 1134705692, ...
                       33592, 15227802, 1933708535, ...
  ...
		

Crossrefs

Row sums give A027686.
Right border gives A003121(n-1).

Programs

  • Maple
    s:= proc(n) s(n):=`if`(n=0, [], [s(n-1), []]) end:
    f:= l-> l=[] or l[1]=[] and f(l[2]):
    v:= proc(l) v(l):=`if`(f(l), [], [`if`(l[1]<>[],
          [l[1][1], [l[1][2], l[2]]], [][]),
          seq([w, l[2]], w=v(l[1])), seq([l[1], w], w=v(l[2]))])
        end:
    p:= proc(l) p(l):=`if`(f(l), 1, add(expand(x*p(w)), w=v(l))) end:
    T:= n-> (h-> seq(coeff(h, x, i), i=ldegree(h)..degree(h)))(p(s(n))):
    seq(T(n), n=1..8);  # Alois P. Heinz, Jan 02 2018

Extensions

More terms from Alois P. Heinz, Jan 02 2018