A282698 Irregular triangle read by rows: row n gives numbers of maximal chains of lengths n-1, n, n+1, ... in the Tamari lattice T_n.
1, 1, 1, 1, 1, 4, 2, 2, 1, 10, 22, 22, 18, 13, 12, 1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286, 1, 35, 392, 1744, 4474, 8435, 12732, 17337, 21158, 27853, 33940, 41230, 45048, 50752, 41826, 33592, 1, 56, 1092, 9220, 40414, 123704, 276324, 550932, 917884
Offset: 1
Examples
Triangle begins: 1; 1; 1, 1; 1, 4, 2, 2; 1, 10, 22, 22, 18, 13, 12; 1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286; ... The transposed triangle, as given by Nelson, begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 4, 10, 20, 35, 56, 84, ... 2, 22, 112, 392, 1092, 2604, ... 2, 22, 232, 1744, 9220, 37444, ... 18, 382, 4474, 40414, 280214, ... 13, 348, 8435, 123704, 1321879, ... 12, 456, 12732, 276324, 4578596, ... 390, 17337, 550932, 12512827, ... 420, 21158, 917884, 29499764, ... 334, 27853, 1510834, 62132126, ... 286, 33940, 2166460, 120837274, ... 41230, 3370312, 221484557, ... 45048, 4810150, 393364848, ... 50752, 7264302, 666955139, ... 41826, 10435954, 1134705692, ... 33592, 15227802, 1933708535, ... ...
Links
- Alois P. Heinz, Rows n = 1..14, flattened
- Luke Nelson, A recursion on maximal chains in the Tamari lattices, Discrete Mathematics 340.4 (2017): 661-677.
- Luke Nelson, A recursion on maximal chains in the Tamari lattices, arXiv:1709.02987 [math.CO], (2017)
Programs
-
Maple
s:= proc(n) s(n):=`if`(n=0, [], [s(n-1), []]) end: f:= l-> l=[] or l[1]=[] and f(l[2]): v:= proc(l) v(l):=`if`(f(l), [], [`if`(l[1]<>[], [l[1][1], [l[1][2], l[2]]], [][]), seq([w, l[2]], w=v(l[1])), seq([l[1], w], w=v(l[2]))]) end: p:= proc(l) p(l):=`if`(f(l), 1, add(expand(x*p(w)), w=v(l))) end: T:= n-> (h-> seq(coeff(h, x, i), i=ldegree(h)..degree(h)))(p(s(n))): seq(T(n), n=1..8); # Alois P. Heinz, Jan 02 2018
Extensions
More terms from Alois P. Heinz, Jan 02 2018
Comments