A282750 Triangle read by rows: T(n,k) is the number of partitions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1, x_2, ..., x_k) = 1 (where 1 <= k <= n).
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 3, 4, 3, 2, 1, 1, 0, 2, 4, 4, 3, 2, 1, 1, 0, 3, 6, 6, 5, 3, 2, 1, 1, 0, 2, 6, 8, 6, 5, 3, 2, 1, 1, 0, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 2, 8, 12, 12, 10, 7, 5, 3, 2, 1, 1, 0, 6, 14, 18, 18, 14
Offset: 1
Examples
Triangle begins: n/k: 1, 2, 3, 4, 5, 6, 7, 8, ... 1: 1; 2: 0, 1; 3: 0, 1, 1; 4: 0, 1, 1, 1; 5: 0, 2, 2, 1, 1; 6: 0, 1, 2, 2, 1, 1; 7: 0, 3, 4, 3, 2, 1, 1; 8: 0, 2, 4, 4, 3, 2, 1, 1; 9: 0, 3, 6, 6, 5, 3, 2, 1, 1; 10: 0, 2, 6, 8, 6, 5, 3, 2, 1, 1; 11: 0, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1; 12: 0, 2, 8, 12, 12, 10, 7, 5, 3, 2, 1, 1; ... The partitions with their gcd value for n=8, k=2..5: (1, 7)=1, (2, 6)=2, (3, 5)=1, (4, 4)=4, so T(8,2)=2. (1, 1, 6)=1, (1, 2, 5)=1, (1, 3, 4)=1, (2, 2, 4)=2, (2, 3, 3)=1, so T(8,2)=4. (1, 1, 1, 5)=1, (1, 1, 2, 4)=1, (1, 1, 3, 3)=1, (1, 2, 2, 3)=1, (2, 2, 2, 2)=2, so T(8,3)=4. (1, 1, 1, 1, 4)=1, (1, 1, 1, 2, 3)=1, (1, 1, 2, 2, 2)=1, so T(8,4)=3. (1, 1, 1, 1, 1, 3)=1, (1, 1, 1, 1, 2, 2)=1, so T(8,5)=2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..5050 (rows 1 <= n <= 100)
Crossrefs
Programs
-
Mathematica
Table[Length@ Select[IntegerPartitions[n, {k}], GCD @@ # == 1 &], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Mar 08 2017 *)
-
Sage
# uses[DivisorTriangle from A327029, A008284] DivisorTriangle(moebius, A008284, 13) # Peter Luschny, Aug 24 2019
Formula
T(n, k) = Sum_{d|n} Moebius(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. - Peter Luschny, Aug 24 2019
Extensions
Corrected a(30)-a(32) and more terms from Lars Blomberg, Mar 08 2017
Comments