A101391
Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1
T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 3, 1;
0, 4, 6, 4, 1;
0, 2, 9, 10, 5, 1;
0, 6, 15, 20, 15, 6, 1;
0, 4, 18, 34, 35, 21, 7, 1;
0, 6, 27, 56, 70, 56, 28, 8, 1;
0, 4, 30, 80, 125, 126, 84, 36, 9, 1;
0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1;
0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
(15) (114) (1113) (11112) (111111)
(51) (123) (1122) (11121)
(132) (1131) (11211)
(141) (1212) (12111)
(213) (1221) (21111)
(231) (1311)
(312) (2112)
(321) (2121)
(411) (2211)
(3111)
Missing are: (42), (24), (33), (222).
(End)
- Alois P. Heinz, Rows n = 1..200, flattened
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A291166 ranks these compositions (evidently).
-
with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
end:
T:= (n, k)-> coeff(b(n,0),x,k):
seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, May 05 2025
-
t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
-
T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016
A327029
T(n, k) = Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. Triangle read by rows for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 2, 2, 1, 1, 0, 6, 6, 4, 2, 1, 1, 0, 7, 3, 4, 3, 2, 1, 1, 0, 8, 8, 6, 6, 3, 2, 1, 1, 0, 9, 6, 9, 6, 5, 3, 2, 1, 1, 0, 10, 11, 10, 10, 8, 5, 3, 2, 1, 1, 0, 11, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 12, 17, 19, 19, 14, 12, 7, 5, 3, 2, 1, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 2, 1]
[3] [0, 3, 1, 1]
[4] [0, 4, 3, 1, 1]
[5] [0, 5, 2, 2, 1, 1]
[6] [0, 6, 6, 4, 2, 1, 1]
[7] [0, 7, 3, 4, 3, 2, 1, 1]
[8] [0, 8, 8, 6, 6, 3, 2, 1, 1]
[9] [0, 9, 6, 9, 6, 5, 3, 2, 1, 1]
Cf.
A000041 (where reversed rows converge to).
-
def DivisorTriangle(f, T, Len, w = None):
D = [[1]]
for n in (1..Len-1):
r = lambda k: [f(d)*T(n//d,k) for d in divisors(n)]
L = [sum(r(k)) for k in (0..n)]
if w != None: L = [*map(lambda v: v * w(n), L)]
D.append(L)
return D
DivisorTriangle(euler_phi, A008284, 10)
A023030
Number of partitions of n into 10 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 74, 97, 126, 164, 209, 267, 335, 423, 522, 653, 796, 983, 1189, 1455, 1737, 2112, 2504, 3012, 3548, 4242, 4953, 5888, 6837, 8063, 9321, 10936, 12551, 14663, 16763, 19451, 22155, 25608, 29003, 33400, 37707, 43184, 48614
Offset: 10
A023024
Number of partitions of n into 4 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 11, 12, 18, 20, 26, 29, 39, 39, 54, 54, 69, 73, 94, 89, 119, 118, 144, 145, 185, 169, 225, 215, 259, 258, 317, 291, 378, 357, 423, 410, 511, 457, 588, 547, 639, 626, 764, 679, 861, 792, 933, 896, 1089, 963, 1203, 1112, 1296, 1240, 1495, 1302, 1650
Offset: 4
-
Table[Sum[Sum[Sum[KroneckerDelta[GCD[k, j, i, (n - i - j - k)], 1], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 4, 80}] (* Wesley Ivan Hurt, Jan 17 2021 *)
A338553
Number of integer partitions of n that are either constant or relatively prime.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 15, 20, 29, 37, 56, 68, 101, 122, 170, 213, 297, 352, 490, 587, 778, 948, 1255, 1488, 1953, 2337, 2983, 3585, 4565, 5393, 6842, 8123, 10088, 12015, 14865, 17534, 21637, 25527, 31085, 36701, 44583, 52262, 63261, 74175, 88936, 104305, 124754
Offset: 0
The a(1) = 1 through a(7) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (51) (52)
(211) (221) (222) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(11111) (2211) (421)
(3111) (511)
(21111) (2221)
(111111) (3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
A078374(n) + 1 is the strict case (n > 1).
A338555 gives the Heinz numbers of these partitions.
A000837 counts relatively prime partitions, with Heinz numbers
A289509.
A282750 counts relatively prime partitions by sum and length.
Cf.
A000010,
A007360,
A008284,
A023023,
A051424,
A101271,
A101391,
A302698,
A304712,
A327516,
A337664.
-
Table[Length[Select[IntegerPartitions[n],SameQ@@#||GCD@@#==1&]],{n,0,30}]
A023025
Number of partitions of n into 5 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 12, 18, 21, 29, 34, 47, 51, 70, 77, 99, 109, 141, 148, 191, 203, 250, 268, 333, 340, 427, 443, 530, 556, 671, 679, 831, 848, 996, 1028, 1226, 1219, 1469, 1483, 1712, 1757, 2062, 2035, 2416, 2413, 2771, 2813, 3266, 3200, 3754, 3739, 4249
Offset: 5
A023026
Number of partitions of n into 6 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 33, 44, 54, 71, 85, 109, 129, 163, 186, 235, 268, 328, 371, 454, 500, 612, 674, 804, 887, 1056, 1138, 1360, 1469, 1715, 1853, 2172, 2302, 2702, 2873, 3302, 3529, 4070, 4262, 4934, 5187, 5898, 6228, 7104, 7374, 8435, 8799, 9904
Offset: 6
A023027
Number of partitions of n into 7 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 14, 21, 27, 38, 47, 65, 79, 104, 126, 164, 193, 248, 289, 362, 421, 522, 594, 733, 832, 1004, 1137, 1366, 1523, 1824, 2028, 2389, 2655, 3120, 3420, 4011, 4395, 5079, 5567, 6430, 6962, 8032, 8695, 9915, 10744, 12241, 13123, 14945, 16038, 18073
Offset: 7
A023028
Number of partitions of n into 8 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 39, 52, 68, 89, 113, 146, 180, 230, 281, 351, 423, 525, 621, 764, 897, 1087, 1268, 1527, 1756, 2104, 2410, 2850, 3248, 3828, 4317, 5066, 5696, 6614, 7418, 8588, 9542, 11018, 12218, 13983, 15477, 17674, 19414, 22119, 24264
Offset: 8
A023029
Number of partitions of n into 9 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 53, 73, 92, 123, 154, 201, 247, 317, 386, 488, 586, 732, 872, 1074, 1269, 1549, 1812, 2194, 2551, 3055, 3535, 4206, 4824, 5708, 6521, 7645, 8701, 10156, 11476, 13338, 15022, 17332, 19468, 22380, 24984, 28627, 31885, 36306
Offset: 9
Showing 1-10 of 11 results.
Comments