A282774 Nonprime numbers k such that sigma(k) - Sum_{j=1..m}{sigma(k) mod d_j} | k, where d_j is one of the m divisors of k.
1, 8, 50, 128, 228, 9976, 32768, 41890, 47668, 53064, 501888, 564736, 1207944, 12026888, 14697568, 29720448, 2147483648, 2256502784, 21471264576, 35929849856
Offset: 1
Examples
sigma(50) = 93; divisors of 50 are 1, 2, 5, 10, 25, 50 and 93 mod 1 + 93 mod 2 + 93 mod 4 + 93 mod 5 + 93 mod 10 + 93 mod 25 + 93 mod 50 = 0 + 1 + 3 + 3 + 18 + 43 = 68 and 50 / (93-68) = 2.
Links
- Lucas A. Brown, A282774+5.py
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 1 to q do if not isprime(n) then a:=sigma(n); b:=sort([op(divisors(n))]); c:=add(a mod b[k],k=1..nops(b)); if type(n/(a-c),integer) then print(n); fi; fi; od; end: P(10^9);
-
PARI
isok(k) = !isprime(k) && !(k % (sigma(k) - sumdiv(k, d, sigma(k) % d))); \\ Michel Marcus, Mar 10 2021
Extensions
a(14)-a(18) from Giovanni Resta, Feb 23 2017
Name clarified and a(19)-a(20) from Lucas A. Brown, Mar 10 2021
Comments