cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282775 Nonprime numbers k such that k | (sigma(k) - Sum_{j=1..m}{sigma(k) mod d_j}), where d_j is one of the m divisors of k.

Original entry on oeis.org

1, 6, 28, 120, 228, 496, 672, 8128, 30240, 32760, 125640, 501888, 523776, 1207944, 2178540, 23569920, 29720448, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

The multiply-perfect numbers are a subset.
For 1, 228, 501888, 1207944, 29720448, etc., their ratio being equal to 1, we have that Sum_{j=1..m}{sigma(k) mod d_j} is the sum of their aliquot parts.
The ratios for the listed terms are 1, 2, 2, 3, 1, 2, 3, 2, 4, 4, 2, 1, 3, 1, 4, 4, 1, 2, 4, 4, 3, 4, 3, 2, ...
a(29) > 6 * 10^10. - Lucas A. Brown, Mar 10 2021

Examples

			sigma(228) = 560; divisors of 288 are 1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228 and 560 mod 1 + 560 mod 2 + 560 mod 3 + 560 mod 4 + ... + 560 mod 57 + 560 mod 76 + 560 mod 144 + 560 mod 228 = 0 + 0 + 2 + 0 + 2 + 8 + 9 + 28 + 47 + 28 + 104 + 104 = 332 and (560 - 332) / 228 = 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do if not isprime(n) then a:=sigma(n); b:=sort([op(divisors(n))]);
    c:=add(a mod b[k],k=1..nops(b)); if type((a-c)/n,integer) then print(n); fi; fi; od; end: P(10^9);
  • PARI
    isok(k) = if (!isprime(k), my(sk = sigma(k)); (sk - sumdiv(k, d, sk % d)) % k == 0;); \\ Michel Marcus, Jun 17 2017

Extensions

a(16)-a(24) from Giovanni Resta, Feb 23 2017
a(25)-a(28) from Lucas A. Brown, Mar 10 2021