A282775 Nonprime numbers k such that k | (sigma(k) - Sum_{j=1..m}{sigma(k) mod d_j}), where d_j is one of the m divisors of k.
1, 6, 28, 120, 228, 496, 672, 8128, 30240, 32760, 125640, 501888, 523776, 1207944, 2178540, 23569920, 29720448, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160
Offset: 1
Keywords
Examples
sigma(228) = 560; divisors of 288 are 1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228 and 560 mod 1 + 560 mod 2 + 560 mod 3 + 560 mod 4 + ... + 560 mod 57 + 560 mod 76 + 560 mod 144 + 560 mod 228 = 0 + 0 + 2 + 0 + 2 + 8 + 9 + 28 + 47 + 28 + 104 + 104 = 332 and (560 - 332) / 228 = 1.
Links
- Lucas A. Brown, A282774+5.py
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 1 to q do if not isprime(n) then a:=sigma(n); b:=sort([op(divisors(n))]); c:=add(a mod b[k],k=1..nops(b)); if type((a-c)/n,integer) then print(n); fi; fi; od; end: P(10^9);
-
PARI
isok(k) = if (!isprime(k), my(sk = sigma(k)); (sk - sumdiv(k, d, sk % d)) % k == 0;); \\ Michel Marcus, Jun 17 2017
Extensions
a(16)-a(24) from Giovanni Resta, Feb 23 2017
a(25)-a(28) from Lucas A. Brown, Mar 10 2021
Comments