cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282779 Period of cubes mod n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 20, 21, 22, 23, 24, 25, 26, 9, 28, 29, 30, 31, 32, 33, 34, 35, 12, 37, 38, 39, 40, 41, 42, 43, 44, 15, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 56, 57, 58, 59, 60, 61, 62, 21, 64, 65, 66, 67, 68, 69, 70, 71, 24, 73, 74, 75, 76, 77, 78, 79, 80, 27
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2017

Keywords

Comments

The length of the period of A000035 (n=2), A010872 (n=3), A109718 (n=4), A070471 (n=5), A010875 (n=6), A070472 (n=7), A109753 (n=8), A167176 (n=9), A008960 (n = 10), etc. (see also comment in A000578 from R. J. Mathar).
Conjecture: let a_p(n) be the length of the period of the sequence k^p mod n where p is a prime, then a_p(n) = n/p if n == 0 (mod p^2) else a_p(n) = n.
For example: sequence k^7 mod 98 gives 1, 30, 31, 18, 19, 48, 49, 50, 79, 80, 67, 68, 97, 0, 1, 30, 31, 18, 19, 48, 49, 50, 79, 80, 67, 68, 97, 0, ... (period 14), 7 is a prime, 98 == 0 (mod 7^2) and 98/7 = 14.

Examples

			a(9) = 3 because reading 1, 8, 27, 64, 125, 216, 343, 512, ... modulo 9 gives 1, 8, 0, 1, 8, 0, 1, 8, 0, ... with period length 3.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := For[k = 1, True, k++, If[Mod[k^3, n] == 0 && Mod[(k + 1)^3 , n] == 1, Return[k]]]; Table[a[n], {n, 1, 81}]

Formula

Apparently: a(n) = 2*a(n-9) - a(n-18).
Empirical g.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 3*x^8 + 8*x^9 + 7*x^10 + 6*x^11 + 5*x^12 + 4*x^13 + 3*x^14 + 2*x^15 + x^16) / ((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2). - Colin Barker, Feb 21 2017